Learn R Programming

dr4pl (version 2.0.0)

confint.dr4pl: Fit a 4 parameter logistic (4PL) model to dose-response data.

Description

Compute the approximate confidence intervals of the parameters of a 4PL model based on the asymptotic normality of least squares estimators.

Usage

# S3 method for dr4pl
confint(object, parm = NULL, level = 0.95, ...)

Arguments

object

An object of the dr4pl class

parm

parameters of the dr4pl object. Usually made with [dr4pl_theta]

level

Confidence level

...

Other parameters to be passed to vcov

Value

A matrix of the confidence intervals in which each row represents a parameter and each column represents the lower and upper bounds of the confidence intervals of the corresponding parameters.

Details

This function computes the approximate confidence intervals of the true parameters of a 4PL model based on the asymptotic normality of the least squares estimators in nonlinear regression. The Hessian matrix is used to obtain the second order approximation to the sum-of-squares loss function. Please refer to Subsection 5.2.2 of Seber and Wild (1989).

References

Seber1989dr4pl

Examples

Run this code
# NOT RUN {
obj.dr4pl <- dr4pl(Response ~ Dose, data = sample_data_1)  # Fit a 4PL model to data

## Use the data 'sample_data_1' to obtain confidence intervals.
confint(obj.dr4pl)  # 95% confidence intervals
confint(obj.dr4pl, level = 0.99)  # 99% confidence intervals

theta <- FindInitialParms(x = sample_data_1$Dose, y = sample_data_1$Response)

# Use the same data 'sample_data_1' but different parameter estimates to obtain
# confidence intervals.
confint(obj.dr4pl, parm = theta)

# }

Run the code above in your browser using DataLab