# NOT RUN {
set.seed(1)
## Set seed for reproducibility
data(AOH)
## Load AOH data
test1<-bcct(formula=y~(alc+hyp+obe)^3,data=AOH,n.sample=100,prior="UIP")
## Bayesian analysis of complete contingency table. Let the saturated model
## be the maximal model and do 100 iterations.
summary(test1)
## Summarise the result. Will get:
#Posterior summary statistics of log-linear parameters:
# post_prob post_mean post_var lower_lim upper_lim
#(Intercept) 1 2.877924 0.002574 2.78778 2.97185
#alc1 1 -0.060274 0.008845 -0.27772 0.06655
#alc2 1 -0.049450 0.006940 -0.20157 0.11786
#alc3 1 0.073111 0.005673 -0.05929 0.20185
#hyp1 1 -0.544988 0.003485 -0.65004 -0.42620
#obe1 1 -0.054672 0.007812 -0.19623 0.12031
#obe2 1 0.007809 0.004127 -0.11024 0.11783
#NB: lower_lim and upper_lim refer to the lower and upper values of the
#95 % highest posterior density intervals, respectively
#
#Posterior model probabilities:
# prob model_formula
#1 0.45 ~alc + hyp + obe
#2 0.30 ~alc + hyp + obe + hyp:obe
#3 0.11 ~alc + hyp + obe + alc:hyp + hyp:obe
#4 0.06 ~alc + hyp + obe + alc:hyp + alc:obe + hyp:obe
#5 0.05 ~alc + hyp + obe + alc:hyp
#
#Total number of models visited = 7
#
#Under the X2 statistic
#
#Summary statistics for T_pred
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 11.79 20.16 23.98 24.70 28.77 52.40
#
#Summary statistics for T_obs
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 8.18 24.22 31.51 30.12 35.63 42.49
#
#Bayesian p-value = 0.28
set.seed(1)
## Set seed for reproducibility
data(spina)
## Load spina data
test2<-bict(formula=y~(S1+S2+S3+eth)^2,data=spina,n.sample=100,prior="UIP")
## Bayesian analysis of incomplete contingency table. Let the model with two-way
## interactions be the maximal model and do 100 iterations.
summary(test2)
## Summarise the result. Will get:
#Posterior summary statistics of log-linear parameters:
# post_prob post_mean post_var lower_lim upper_lim
#(Intercept) 1 1.0427 0.033967 0.6498 1.4213
#S11 1 -0.3159 0.015785 -0.4477 -0.1203
#S21 1 0.8030 0.018797 0.6127 1.1865
#S31 1 0.7951 0.003890 0.6703 0.8818
#eth1 1 2.8502 0.033455 2.4075 3.1764
#eth2 1 0.1435 0.072437 -0.4084 0.5048
#S21:S31 1 -0.4725 0.002416 -0.5555 -0.3928
#NB: lower_lim and upper_lim refer to the lower and upper values of the
#95 % highest posterior density intervals, respectively
#
#Posterior model probabilities:
# prob model_formula
#1 0.36 ~S1 + S2 + S3 + eth + S2:S3
#2 0.19 ~S1 + S2 + S3 + eth + S2:S3 + S2:eth
#3 0.12 ~S1 + S2 + S3 + eth + S1:eth + S2:S3
#4 0.12 ~S1 + S2 + S3 + eth + S1:S2 + S1:S3 + S1:eth + S2:S3 + S2:eth + S3:eth
#5 0.10 ~S1 + S2 + S3 + eth + S1:S3 + S1:eth + S2:S3
#6 0.06 ~S1 + S2 + S3 + eth + S1:S3 + S1:eth + S2:S3 + S2:eth
#Total number of models visited = 8
#
#Posterior mean of total population size = 726.75
#95 % highest posterior density interval for total population size = ( 706 758 )
#
#Under the X2 statistic
#
#Summary statistics for T_pred
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 8.329 15.190 20.040 22.550 24.180 105.200
#
#Summary statistics for T_obs
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 5.329 18.270 22.580 21.290 24.110 37.940
#
#Bayesian p-value = 0.45
# }
Run the code above in your browser using DataLab