control.ergm(drop=TRUE, init=NULL,
init.method=NULL,
main.method=c("MCMLE","Robbins-Monro",
"Stochastic-Approximation","Stepping"),
force.main=FALSE,
main.hessian=TRUE,
MPLE.max.dyad.types=1e+6,
MPLE.samplesize=50000,
MPLE.type=c("glm", "penalized"),
MCMC.prop.weights="default",
MCMC.prop.args=list(),
MCMC.burnin=10000,
MCMC.interval=100,
MCMC.samplesize=10000,
MCMC.return.stats=TRUE,
MCMC.burnin.retries=0,
MCMC.burnin.check.last=1/2,
MCMC.burnin.check.alpha=0.01,
MCMC.runtime.traceplot=FALSE,
MCMC.init.maxedges=20000,
MCMC.max.maxedges=Inf,
MCMC.addto.se=TRUE,
MCMC.compress=FALSE,
MCMC.packagenames=c(),
SAN.maxit=10,
SAN.control=control.san(
coef=init,
SAN.prop.weights=MCMC.prop.weights,
SAN.prop.args=MCMC.prop.args,
SAN.init.maxedges=MCMC.init.maxedges,
SAN.burnin=MCMC.burnin*10,
SAN.interval=MCMC.interval,
SAN.packagenames=MCMC.packagenames,
parallel=parallel,
parallel.type=parallel.type,
parallel.version.check=parallel.version.check),
MCMLE.maxit=20,
MCMLE.conv.min.pval=0.5,
MCMLE.NR.maxit=100,
MCMLE.NR.reltol=sqrt(.Machine$double.eps),
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
obs.MCMC.burnin=MCMC.burnin,
MCMLE.check.degeneracy=FALSE,
MCMLE.MCMC.precision=0.05,
MCMLE.metric=c("lognormal", "Median.Likelihood",
"EF.Likelihood", "naive"),
MCMLE.method=c("BFGS","Nelder-Mead"),
MCMLE.trustregion=20,
MCMLE.dampening=FALSE,
MCMLE.dampening.min.ess=20,
MCMLE.dampening.level=0.1,
MCMLE.steplength=0.5,
MCMLE.adaptive.trustregion=3,
MCMLE.adaptive.epsilon=0.01,
MCMLE.sequential=TRUE,
MCMLE.density.guard.min=10000,
MCMLE.density.guard=exp(3),
SA.phase1_n=NULL,
SA.initial_gain=NULL,
SA.nsubphases=MCMLE.maxit,
SA.niterations=NULL,
SA.phase3_n=NULL,
SA.trustregion=0.5,
RM.phase1n_base=7,
RM.phase2n_base=100,
RM.phase2sub=7,
RM.init_gain=0.5,
RM.phase3n=500,
Step.MCMC.samplesize=100,
Step.maxit=50,
Step.gridsize=100,
loglik.control=control.logLik.ergm(),
seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...)
NA vector equal in length to the number of
parameters in the model or NULL (the default); the initial
values for the estimation and coefficient offset terms. If NULL
is passed, all of the initiergmergm function.
See the usage section in ergm for details.ergm. The control.simulate
function performs a
similar function for
simulate.ergm;
control.gof performs a
similar function for gof.