Learn R Programming

ergm (version 3.1.3)

control.ergm: Auxiliary for Controlling ERGM Fitting

Description

Auxiliary function as user interface for fine-tuning 'ergm' fitting.

Usage

control.ergm(drop=TRUE,

init=NULL, init.method=NULL, main.method=c("MCMLE","Robbins-Monro", "Stochastic-Approximation","Stepping"), force.main=FALSE, main.hessian=TRUE,

MPLE.max.dyad.types=1e+6, MPLE.samplesize=50000, MPLE.type=c("glm", "penalized"), MCMC.prop.weights="default", MCMC.prop.args=list(), MCMC.burnin=10000, MCMC.interval=100, MCMC.samplesize=10000, MCMC.return.stats=TRUE, MCMC.burnin.retries=0, MCMC.burnin.check.last=1/2, MCMC.burnin.check.alpha=0.01, MCMC.runtime.traceplot=FALSE, MCMC.init.maxedges=20000, MCMC.max.maxedges=Inf, MCMC.addto.se=TRUE, MCMC.compress=FALSE, MCMC.packagenames=c(),

SAN.maxit=10, SAN.control=control.san( coef=init, SAN.prop.weights=MCMC.prop.weights, SAN.prop.args=MCMC.prop.args, SAN.init.maxedges=MCMC.init.maxedges, SAN.burnin=MCMC.burnin*10, SAN.interval=MCMC.interval, SAN.packagenames=MCMC.packagenames, parallel=parallel, parallel.type=parallel.type, parallel.version.check=parallel.version.check),

MCMLE.maxit=20, MCMLE.conv.min.pval=0.5, MCMLE.NR.maxit=100, MCMLE.NR.reltol=sqrt(.Machine$double.eps), obs.MCMC.samplesize=MCMC.samplesize, obs.MCMC.interval=MCMC.interval, obs.MCMC.burnin=MCMC.burnin, MCMLE.check.degeneracy=FALSE, MCMLE.MCMC.precision=0.05, MCMLE.metric=c("lognormal", "Median.Likelihood", "EF.Likelihood", "naive"), MCMLE.method=c("BFGS","Nelder-Mead"), MCMLE.trustregion=20, MCMLE.dampening=FALSE, MCMLE.dampening.min.ess=20, MCMLE.dampening.level=0.1, MCMLE.steplength=0.5, MCMLE.adaptive.trustregion=3, MCMLE.adaptive.epsilon=0.01, MCMLE.sequential=TRUE, MCMLE.density.guard.min=10000, MCMLE.density.guard=exp(3),

SA.phase1_n=NULL, SA.initial_gain=NULL, SA.nsubphases=MCMLE.maxit, SA.niterations=NULL, SA.phase3_n=NULL, SA.trustregion=0.5,

RM.phase1n_base=7, RM.phase2n_base=100, RM.phase2sub=7, RM.init_gain=0.5, RM.phase3n=500,

Step.MCMC.samplesize=100, Step.maxit=50, Step.gridsize=100,

loglik.control=control.logLik.ergm(),

seed=NULL, parallel=0, parallel.type=NULL, parallel.version.check=TRUE, ...)

Arguments

drop
Logical: If TRUE, terms whose observed statistic values are at the extremes of their possible ranges are dropped from the fit and their corresponding parameter estimates are set to plus or minus infinity, as appropriate. This is done because
init
numeric or NA vector equal in length to the number of parameters in the model or NULL (the default); the initial values for the estimation and coefficient offset terms. If NULL is passed, all of the initi

Value

  • A list with arguments as components.

item

  • init.method
  • main.method
  • force.main
  • main.hessian
  • MPLE.max.dyad.types
  • MPLE.samplesize
  • MPLE.type
  • MCMC.prop.weights
  • MCMC.prop.args
  • MCMC.burnin
  • MCMC.interval
  • MCMC.samplesize
  • MCMC.return.stats
  • MCMC.burnin.retries
  • MCMC.burnin.check.last
  • MCMC.burnin.check.alpha
  • MCMC.runtime.traceplot
  • MCMC.init.maxedges, MCMC.max.maxedges
  • MCMC.addto.se
  • MCMC.compress
  • MCMC.packagenames
  • SAN.maxit
  • SAN.control
  • MCMLE.maxit
  • MCMLE.conv.min.pval
  • MCMLE.NR.maxit
  • MCMLE.NR.reltol
  • obs.MCMC.samplesize,obs.MCMC.burnin,obs.MCMC.interval
  • MCMLE.check.degeneracy
  • MCMLE.MCMC.precision
  • MCMLE.metric
  • MCMLE.method
  • MCMLE.trustregion
  • MCMLE.dampening
  • MCMLE.dampening.min.ess
  • MCMLE.dampening.level
  • MCMLE.steplength
  • MCMLE.adaptive.trustregion
  • MCMLE.adaptive.epsilon
  • MCMLE.sequential
  • MCMLE.density.guard.min, MCMLE.density.guard
  • SA.phase1_n
  • SA.initial_gain
  • SA.nsubphases
  • SA.niterations
  • SA.phase3_n
  • SA.trustregion
  • RM.phase1n_base
  • RM.phase2n_base
  • RM.phase2sub
  • RM.init_gain
  • RM.phase3n
  • Step.MCMC.samplesize
  • Step.maxit
  • Step.gridsize
  • loglik.control
  • seed
  • parallel
  • parallel.type
  • parallel.version.check
  • ...

code

ergm

eqn

$1/N$

Details

This function is only used within a call to the ergm function. See the usage section in ergm for details.

References

  • Snijders, T.A.B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random Graph Models. Journal of Social Structure. Available fromhttp://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf.
  • Firth (1993), Bias Reduction in Maximum Likelihood Estimates. Biometrika, 80: 27-38.
  • Hunter, D. R. and M. S. Handcock (2006), Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics, 15: 565-583.
  • Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2012), Improving Simulation-Based Algorithms for Fitting ERGMs, Journal of Computational and Graphical Statistics, to appear.

See Also

ergm. The control.simulate function performs a similar function for simulate.ergm; control.gof performs a similar function for gof.