control.ergm(drop=TRUE, init=NULL,
init.method=NULL,
main.method=c("MCMLE","Robbins-Monro",
"Stochastic-Approximation","Stepping"),
force.main=FALSE,
main.hessian=TRUE,
MPLE.max.dyad.types=1e+6,
MPLE.samplesize=50000,
MPLE.type=c("glm", "penalized"),
MCMC.prop.weights="default",
MCMC.prop.args=list(),
MCMC.burnin=10000,
MCMC.interval=100,
MCMC.samplesize=10000,
MCMC.return.stats=TRUE,
MCMC.burnin.retries=0,
MCMC.burnin.check.last=1/2,
MCMC.burnin.check.alpha=0.01,
MCMC.runtime.traceplot=FALSE,
MCMC.init.maxedges=20000,
MCMC.max.maxedges=Inf,
MCMC.addto.se=TRUE,
MCMC.compress=FALSE,
MCMC.packagenames=c(),
SAN.maxit=10,
SAN.control=control.san(
coef=init,
SAN.prop.weights=MCMC.prop.weights,
SAN.prop.args=MCMC.prop.args,
SAN.init.maxedges=MCMC.init.maxedges,
SAN.burnin=MCMC.burnin*10,
SAN.interval=MCMC.interval,
SAN.packagenames=MCMC.packagenames,
parallel=parallel,
parallel.type=parallel.type,
parallel.version.check=parallel.version.check),
MCMLE.maxit=20,
MCMLE.conv.min.pval=0.5,
MCMLE.NR.maxit=100,
MCMLE.NR.reltol=sqrt(.Machine$double.eps),
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
obs.MCMC.burnin=MCMC.burnin,
MCMLE.check.degeneracy=FALSE,
MCMLE.MCMC.precision=0.05,
MCMLE.metric=c("lognormal", "Median.Likelihood",
"EF.Likelihood", "naive"),
MCMLE.method=c("BFGS","Nelder-Mead"),
MCMLE.trustregion=20,
MCMLE.dampening=FALSE,
MCMLE.dampening.min.ess=20,
MCMLE.dampening.level=0.1,
MCMLE.steplength=0.5,
MCMLE.adaptive.trustregion=3,
MCMLE.adaptive.epsilon=0.01,
MCMLE.sequential=TRUE,
MCMLE.density.guard.min=10000,
MCMLE.density.guard=exp(3),
SA.phase1_n=NULL,
SA.initial_gain=NULL,
SA.nsubphases=MCMLE.maxit,
SA.niterations=NULL,
SA.phase3_n=NULL,
SA.trustregion=0.5,
RM.phase1n_base=7,
RM.phase2n_base=100,
RM.phase2sub=7,
RM.init_gain=0.5,
RM.phase3n=500,
Step.MCMC.samplesize=100,
Step.maxit=50,
Step.gridsize=100,
loglik.control=control.logLik.ergm(),
seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...)
NA
vector equal in length to the number of
parameters in the model or NULL
(the default); the initial
values for the estimation and coefficient offset terms. If NULL
is passed, all of the initiergm
ergm
function.
See the usage
section in ergm
for details.ergm
. The control.simulate
function performs a
similar function for
simulate.ergm
;
control.gof
performs a
similar function for gof
.