
covariate
and object
. Letting $\Sigma$ denote
a correlation matrix, a square-root factor of $\Sigma$ is
any square matrix $L$ such that $\Sigma = L'L$. When
corr = FALSE
, this method extracts $L^{-t}$.## S3 method for class 'corStruct':
corMatrix(object, covariate, corr, \dots)
"corStruct"
representing a correlation structure.getCovariate(object)
.TRUE
the function returns the
correlation matrix, or list of correlation matrices, represented by
object
. If FALSE
the function returns a transpose
inverse square-root of the correlation covariate
is a vector (matrix), the returned value will be
an array with the corresponding correlation matrix (or its transpose
inverse square-root factor). If the covariate
is a list of
vectors (matrices), the returned value will be a list with the
correlation matrices (or their transpose inverse square-root factors)
corresponding to each component of covariate
.corFactor.corStruct
, Initialize.corStruct
cs1 <- corAR1(0.3)
corMatrix(cs1, covariate = 1:4)
corMatrix(cs1, covariate = 1:4, corr = FALSE)
# Pinheiro and Bates, p. 225
cs1CompSymm <- corCompSymm(value = 0.3, form = ~ 1 | Subject)
cs1CompSymm <- Initialize(cs1CompSymm, data = Orthodont)
corMatrix(cs1CompSymm)
# Pinheiro and Bates, p. 226
cs1Symm <- corSymm(value = c(0.2, 0.1, -0.1, 0, 0.2, 0),
form = ~ 1 | Subject)
cs1Symm <- Initialize(cs1Symm, data = Orthodont)
corMatrix(cs1Symm)
# Pinheiro and Bates, p. 236
cs1AR1 <- corAR1(0.8, form = ~ 1 | Subject)
cs1AR1 <- Initialize(cs1AR1, data = Orthodont)
corMatrix(cs1AR1)
# Pinheiro and Bates, p. 237
cs1ARMA <- corARMA(0.4, form = ~ 1 | Subject, q = 1)
cs1ARMA <- Initialize(cs1ARMA, data = Orthodont)
corMatrix(cs1ARMA)
# Pinheiro and Bates, p. 238
spatDat <- data.frame(x = (0:4)/4, y = (0:4)/4)
cs1Exp <- corExp(1, form = ~ x + y)
cs1Exp <- Initialize(cs1Exp, spatDat)
corMatrix(cs1Exp)
Run the code above in your browser using DataLab