core(X, y, Sigmas = NULL, ns = NULL, numdir = 2,
numdir.test = FALSE, ...)n rows of observations and p columns of predictors. The predictors are assumed to have a continuous distribution.p. It is the number of directions to estimate for the reduction.FALSE, core computes the reduction for the specific number of directions numdir. If TRUE, it does the computation of the reduction for the numdir directions, from 0 to numdGrassmannOptim.ldr. The output depends on the argument numdir.test. If numdir.test=TRUE, a list of matrices is provided corresponding to the numdir values (1 through numdir) for each of the parameters $\Gamma$, $\Sigma$, and $\Sigma_g$. Otherwise, a single list of matrices for a single value of numdir. A likelihood ratio test and information criteria are provided to estimate the dimension of the sufficient reduction when numdir.test=TRUE. The output of loglik, aic, bic, numpar are vectors with numdir elements if numdir.test=TRUE,
and scalars otherwise. Following are the components returned:lad, pfcdata(flea)
fit1 <- core(X=flea[,-1], y=flea[,1], numdir.test=TRUE)
summary(fit1)
data(snakes)
fit2 <- ldr(Sigmas=snakes[-3], ns=snakes[[3]], numdir = 4,
model = "core", numdir.test = TRUE, verbose=TRUE,
sim_anneal = TRUE, max_iter = 200, max_iter_sa=200)
summary(fit2)Run the code above in your browser using DataLab