covRob(data, corr = FALSE, distance = TRUE, na.action = na.fail, estim = "auto", control = covRob.control(estim, ...), ...)
corr = TRUE
then the estimated correlation matrix is computed.distance = TRUE
the Mahalanobis distances are computed.na.fail
produces an error if missing values are present. An alternative is na.omit
which deletes observations that contain one or more missing values.covRob.control
for the possible control parameters and their default settings. This argument is ignored when estim = "auto"
.estim != "auto"
.covRob
" with components:cov
and center
. Only present if distance = TRUE
in the call
.corr = TRUE
then cov
and raw.cov
contain robust estimates of the correlation matrix of x
.covRob.control
,
cov
,
fastmcd
,
donostah
,
fastcov
,
rockem
.data(stack.dat)
covRob(stack.dat, estim = "mcd", quan = .75, ntrial = 1000)
Run the code above in your browser using DataLab