covRob(data, corr = FALSE, distance = TRUE, na.action = na.fail,
estim = "auto", control = covRob.control(estim, ...), ...)
corr = TRUE
then the estimated correlation matrix is computed.distance = TRUE
the squared Mahalanobis distances are computed.na.fail
produces an error if missing values are present. An alternative is na.omit
which deletes observations that contain one or more missing values.covRob.control
for the possible control parameters and their default settings. This argument is ignored when estim = "auto"
.estim != "auto"
.covRob
" with components:cov
and center
. If distance = FALSE
this element is set to NA
.NA
.NA
.raw.cov
and raw.center
. If distance = FALSE
or if there is no initial robust estimate then this element is set to NA
.corr = TRUE
then cov
and raw.cov
contain robust estimates of the correlation matrix of data
.covRob
function selects a robust covariance estimator that is likely to provide a good estimate in a reasonable amount of time. Presently this selection is based on the problem size. The Donoho-Stahel estimator is used if there are less than 1000 observations and less than 10 variables or less than 5000 observations and less than 5 variables. If there are less than 50000 observations and less than 20 variables then the MCD is used. For larger problems, the Orthogonalized Quadrant Correlation estimator is used.The MCD and Reweighted-MCD estimates (estim = "mcd"
and estim = "weighted"
respectively) are computed using the covMcd
function in the robustbase package. By default, covMcd
returns the reweighted estimate; the actual MCD estimate is contained in the components of the output list prefixed with raw
.
The M estimate (estim = "M"
) is computed using the covMest
function in the rrcov package. For historical reasons the Robust Library uses the MCD to compute the initial estimate.
The Donoho-Stahel (estim = "donostah"
) estimator is computed using the CovSde
function provided in the rrcov package.
The pairwise estimators (estim = "pairwisegk"
and estim = "pairwiseqc"
) are computed using the CovOgk
function in the rrcov package.
P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212--223.
D. L. Woodruff and D. M. Rocke (1994) Computable robust estimation of multivariate location and shape on high dimension using compound estimators. Journal of the American Statistical Association, 89, 888--896.
R. A. Maronna and R. H. Zamar (2002) Robust estimates of location and dispersion of high-dimensional datasets. Technometrics 44 (4), 307--317.
CovSde
,
covMcd
,
CovOgk
,
covMest
,
covRob.control
,
ccov
.data(stackloss)
covRob(stackloss)
Run the code above in your browser using DataLab