coxreg(formula = formula(data), data = parent.frame(), weights, t.offset,
na.action = getOption("na.action"), init = NULL,
method = c("efron", "breslow", "mppl", "ml"),
control = list(eps = 1e-08, maxiter = 25, trace = FALSE),
singular.ok = TRUE, model = FALSE,
center = TRUE,
x = FALSE, y = TRUE, boot = FALSE, efrac = 0,
geometric = FALSE, rs = NULL,
frailty = NULL, max.survs = NULL)
options()$na.action
.eps
(convergence
criterion), maxiter
(maximum number of iterations), and
silent
(logical, controlling amount of output). You can
change any component without mention the other(s).c("coxreg", "coxph")
with componentsNULL
if not).rs
is dangerous, see note. It
can however speed up computing time considerably for huge data sets.efron
, and the alternative, breslow
,
are both the same as in coxph
in package
survival
. The methods mppl
and ml
are maximum
likelihood based.coxph
, risksets
dat <- data.frame(time= c(4, 3,1,1,2,2,3),
status=c(1,1,1,0,1,1,0),
x= c(0, 2,1,1,1,0,0),
sex= c(0, 0,0,0,1,1,1))
coxreg( Surv(time, status) ~ x + strata(sex), data = dat) #stratified model
# Same as:
rs <- risksets(Surv(dat$time, dat$status), strata = dat$sex)
coxreg( Surv(time, status) ~ x, data = dat, rs = rs) #stratified model
Run the code above in your browser using DataLab