coxreg(formula = formula(data), data = parent.frame(), weights, subset,
t.offset, na.action = getOption("na.action"), init = NULL,
method = c("efron", "breslow", "mppl", "ml"),
control = list(eps = 1e-08, maxiter = 25, trace = FALSE),
singular.ok = TRUE, model = FALSE,
center = TRUE,
x = FALSE, y = TRUE, boot = FALSE, efrac = 0,
geometric = FALSE, rs = NULL,
frailty = NULL, max.survs = NULL)options()$na.action.eps (convergence
criterion), maxiter (maximum number of iterations), and
silent (logical, controlling amount of output). You can
change any component without mention the other(s).c("coxreg", "coxph") with componentsNULL if not).rs is dangerous, see note. It
can however speed up computing time considerably for huge data sets.efron, and the alternative, breslow,
are both the same as in coxph in package
survival. The methods mppl and ml are maximum
likelihood based.coxph, risksetsdat <- data.frame(time= c(4, 3,1,1,2,2,3),
status=c(1,1,1,0,1,1,0),
x= c(0, 2,1,1,1,0,0),
sex= c(0, 0,0,0,1,1,1))
coxreg( Surv(time, status) ~ x + strata(sex), data = dat) #stratified model
# Same as:
rs <- risksets(Surv(dat$time, dat$status), strata = dat$sex)
coxreg( Surv(time, status) ~ x, data = dat, rs = rs) #stratified modelRun the code above in your browser using DataLab