csi function in kernlab is an implementation of an
incomplete Cholesky decomposition algorithm which exploits side
information (e.g., classification labels, regression responses) to
compute a low rank decomposition of a kernel matrix from the data.
"csi"(x, y, kernel="rbfdot", kpar=list(sigma=0.1), rank,
centering = TRUE, kappa = 0.99 ,delta = 40 ,tol = 1e-5)kernel,
which computes the inner product in feature space between two
vector arguments. kernlab provides the most popular kernel functions
which can be used by setting the kernel parameter to the following
strings:
rbfdot Radial Basis kernel function "Gaussian"
polydot Polynomial kernel function
vanilladot Linear kernel function
tanhdot Hyperbolic tangent kernel function
laplacedot Laplacian kernel function
besseldot Bessel kernel function
anovadot ANOVA RBF kernel function
splinedot Spline kernel
stringdot String kernel
The kernel parameter can also be set to a user defined function of class kernel by passing the function name as an argument.
sigma inverse kernel width for the Radial Basis
kernel function "rbfdot" and the Laplacian kernel "laplacedot".
degree, scale, offset for the Polynomial kernel "polydot"
scale, offset for the Hyperbolic tangent kernel
function "tanhdot"
sigma, order, degree for the Bessel kernel "besseldot".
sigma, degree for the ANOVA kernel "anovadot".
Hyper-parameters for user defined kernels can be passed through the kpar parameter as well.
TRUE centering is performed (default: TRUE)object@slot
or by accessor functions with the same name
(e.g., pivots(object))csi uses the class labels, or regression responses to compute a
more appropriate approximation for the problem at hand considering the
additional information from the response variable. inchol, chol, csi-class
data(iris)
## create multidimensional y matrix
yind <- t(matrix(1:3,3,150))
ymat <- matrix(0, 150, 3)
ymat[yind==as.integer(iris[,5])] <- 1
datamatrix <- as.matrix(iris[,-5])
# initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- csi(datamatrix,ymat, kernel=rbf, rank = 30)
dim(Z)
pivots(Z)
# calculate kernel matrix
K <- crossprod(t(Z))
# difference between approximated and real kernel matrix
(K - kernelMatrix(kernel=rbf, datamatrix))[6,]
Run the code above in your browser using DataLab