## Examples set to 'dontrun' because they take longer than 5s.
## Not run:
# mfrowOld<-par()$mfrow
# par(mfrow=c(2, 3))
#
# ### example from Driver, Oud, Voelkle (2015),
# ### simulated happiness and leisure time with unobserved heterogeneity.
# data(ctExample1)
# traitmodel <- ctModel(n.manifest=2, n.latent=2, Tpoints=6, LAMBDA=diag(2),
# manifestNames=c('LeisureTime', 'Happiness'),
# latentNames=c('LeisureTime', 'Happiness'), TRAITVAR="auto")
# traitfit <- ctFit(datawide=ctExample1, ctmodelobj=traitmodel)
# summary(traitfit)
# plot(traitfit, wait=FALSE)
#
#
# ###Example from Voelkle, Oud, Davidov, and Schmidt (2012) - anomia and authoritarianism.
# data(AnomAuth)
# AnomAuthmodel <- ctModel(LAMBDA = matrix(c(1, 0, 0, 1), nrow = 2, ncol = 2),
# Tpoints = 5, n.latent = 2, n.manifest = 2, MANIFESTVAR=diag(0, 2), TRAITVAR = NULL)
# AnomAuthfit <- ctFit(AnomAuth, AnomAuthmodel)
# summary(AnomAuthfit)
#
#
# ### Single subject time series - using Kalman filter (OpenMx statespace expectation)
# data('ctExample3')
# model <- ctModel(n.latent = 1, n.manifest = 3, Tpoints = 100,
# LAMBDA = matrix(c(1, 'lambda2', 'lambda3'), nrow = 3, ncol = 1),
# MANIFESTMEANS = matrix(c(0, 'manifestmean2', 'manifestmean3'), nrow = 3,
# ncol = 1))
# fit <- ctFit(data = ctExample3, ctmodelobj = model, objective = 'Kalman',
# stationary = c('T0VAR'))
#
#
# ###Oscillating model from Voelkle & Oud (2013).
# data("Oscillating")
#
# inits <- c(-38, -.5, 1, 1, .1, 1, 0, .9)
# names(inits) <- c("crosseffect","autoeffect", "diffusion",
# "T0var11", "T0var21", "T0var22","m1", "m2")
#
# oscillatingm <- ctModel(n.latent = 2, n.manifest = 1, Tpoints = 11,
# MANIFESTVAR = matrix(c(0), nrow = 1, ncol = 1),
# LAMBDA = matrix(c(1, 0), nrow = 1, ncol = 2),
# T0MEANS = matrix(c('m1', 'm2'), nrow = 2, ncol = 1),
# T0VAR = matrix(c("T0var11", "T0var21", 0, "T0var22"), nrow = 2, ncol = 2),
# DRIFT = matrix(c(0, "crosseffect", 1, "autoeffect"), nrow = 2, ncol = 2),
# CINT = matrix(0, ncol = 1, nrow = 2),
# DIFFUSION = matrix(c(0, 0, 0, "diffusion"), nrow = 2, ncol = 2),
# startValues = inits)
#
# oscillatingf <- ctFit(Oscillating, oscillatingm,carefulFit=FALSE)
# ## End(Not run)
Run the code above in your browser using DataLab