cumul(x, ...)
## S3 method for class 'rma.uni':
cumul(x, order, digits, transf, targs, \dots)
## S3 method for class 'rma.mh':
cumul(x, order, digits, transf, targs, \dots)
## S3 method for class 'rma.peto':
cumul(x, order, digits, transf, targs, \dots)
"rma.mh"
, "rma.peto"
, "rma.uni"
.transf=exp
). If unspecified, no transformation is used.transf
.c("list.rma","cumul.rma")
. The object is a list containing the following components:print.list.rma
. A forest plot showing the results from the cumulative meta-analysis can be obtained with forest.cumul.rma
."rma.uni"
objects, the model specified by x
must be a model without moderators (i.e., either a fixed- or a random-effects model).forest.cumul.rma
### load BCG vaccine data
data(dat.bcg)
### calculate log relative risks and corresponding sampling variances
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
### random-effects model
res <- rma(yi, vi, data=dat)
### cumulative meta-analysis (in the order of publication year)
cumul(res, transf=exp, order=order(dat$year))
### meta-analysis of the (log) relative risks using the Mantel-Haenszel method
res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
### cumulative meta-analysis
cumul(res, order=order(dat.bcg$year))
cumul(res, order=order(dat.bcg$year), transf=TRUE)
### meta-analysis of the (log) odds ratios using Peto's method
res <- rma.mh(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
### cumulative meta-analysis
cumul(res, order=order(dat.bcg$year))
cumul(res, order=order(dat.bcg$year), transf=TRUE)
Run the code above in your browser using DataLab