# NOT RUN {
# generate design matrix x
set.seed(2018)
n=100;p=20
s=10
x=matrix(0,n,1+2*p)
x[,1]=sample(c(0,1),n,replace = TRUE)
x[,seq(2,1+2*p,2)]=matrix(rnorm(n*p),n,p)
x[,seq(3,1+2*p,2)]=x[,seq(2,1+2*p,2)]*x[,1]
g=c(p+1,rep(1:p,rep(2,p))) # groups
v=c(0,rep(1,2*p)) # penalization status
label=c("t",rep(c("prog","pred"),p)) # type of predictor variables
# generate beta
beta=c(rnorm(13,0,2),rep(0,ncol(x)-13))
beta[c(2,4,7,9)]=0
# generate y
data=x%*%beta
noise=rnorm(n)
snr=as.numeric(sqrt(var(data)/(s*var(noise))))
y=data+snr*noise
cvfit=cv.smog(x,y,g,v,label,type = "GCV", family="gaussian")
# }
Run the code above in your browser using DataLab