Last chance! 50% off unlimited learning
Sale ends in
a
and p
, and scale parameter scale
.ddagum(x, scale = 1, shape1.a, shape2.p, log = FALSE)
pdagum(q, scale = 1, shape1.a, shape2.p, lower.tail = TRUE, log.p = FALSE)
qdagum(p, scale = 1, shape1.a, shape2.p, lower.tail = TRUE, log.p = FALSE)
rdagum(n, scale = 1, shape1.a, shape2.p)
length(n) > 1
, the length
is taken to be the number required.log = TRUE
then the logarithm of the density is returned.ddagum
gives the density,
pdagum
gives the distribution function,
qdagum
gives the quantile function, and
rdagum
generates random deviates.dagum
, which is the dagum
,
genbetaII
.probs <- seq(0.1, 0.9, by = 0.1)
shape1.a <- 1; shape2.p <- 2
# Should be 0:
max(abs(pdagum(qdagum(p = probs, shape1.a = shape1.a, shape2.p = shape2.p),
shape1.a = shape1.a, shape2.p = shape2.p) - probs))
par(mfrow = c(1, 2))
x <- seq(-0.01, 5, len = 401)
plot(x, dexp(x), type = "l", col = "black", ylab = "", las = 1, ylim = c(0, 1),
main = "Black is standard exponential, others are ddagum(x, ...)")
lines(x, ddagum(x, shape1.a = shape1.a, shape2.p = 1), col = "orange")
lines(x, ddagum(x, shape1.a = shape1.a, shape2.p = 2), col = "blue")
lines(x, ddagum(x, shape1.a = shape1.a, shape2.p = 5), col = "green")
legend("topright", col = c("orange","blue","green"), lty = rep(1, len = 3),
legend = paste("shape1.a =", shape1.a, ", shape2.p =", c(1, 2, 5)))
plot(x, pexp(x), type = "l", col = "black", ylab = "", las = 1,
main = "Black is standard exponential, others are pdagum(x, ...)")
lines(x, pdagum(x, shape1.a = shape1.a, shape2.p = 1), col = "orange")
lines(x, pdagum(x, shape1.a = shape1.a, shape2.p = 2), col = "blue")
lines(x, pdagum(x, shape1.a = shape1.a, shape2.p = 5), col = "green")
legend("bottomright", col = c("orange","blue","green"), lty = rep(1, len = 3),
legend = paste("shape1.a =", shape1.a, ", shape2.p =", c(1, 2, 5)))
Run the code above in your browser using DataLab