Last chance! 50% off unlimited learning
Sale ends in
dat.colditz1994
dat.bcg
trial | numeric |
trial number | author |
character |
author(s) |
year | numeric |
publication year | tpos |
numeric |
number of TB positive cases in the treated (vaccinated) group |
tneg | numeric |
number of TB negative cases in the treated (vaccinated) group | cpos |
numeric |
number of TB positive cases in the control (non-vaccinated) group |
cneg | numeric |
number of TB negative cases in the control (non-vaccinated) group | ablat |
numeric |
absolute latitude of the study location (in degrees) |
TB positive | |
TB negative | vaccinated group |
tpos |
tneg |
The dataset has been used in several publications to illustrate meta-analytic methods (see ‘References’).
van Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Advanced methods in meta-analysis: Multivariate approach and meta-regression. Statistics in Medicine, 21, 589--624.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1--48. http://www.jstatsoft.org/v36/i03/.
### load BCG vaccine data
data(dat.bcg)
### calculate log relative risks and corresponding sampling variances
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
dat
### random-effects model
res <- rma(yi, vi, data=dat)
res
### average relative risk with 95% CI
predict(res, transf=exp)
### mixed-effects model with absolute latitude and publication year as moderators
res <- rma(yi, vi, mods = ~ ablat + year, data=dat)
res
### predicted average relative risks for 10-60 degrees absolute latitude
### holding the publication year constant at 1970
predict(res, newmods=cbind(seq(from=10, to=60, by=10), 1970), transf=exp)
### note: the interpretation of the results is difficult because absolute
### latitude and publication year are strongly correlated (the more recent
### studies were conducted closer to the equator)
plot(dat$ablat, dat$year)
cor(dat$ablat, dat$year)
Run the code above in your browser using DataLab