dat.collins1985a
numeric
study number
ref numeric
reference number
year numeric
year of publication
nti numeric
number of patients in treatment group
xti numeric
number of patients in treatment group with persistent or recurrent bleedings
nci numeric
number of patients in placebo group
xci numeric
number of patients in placebo group with persistent or recurrent bleedings
}### load data
dat <- get(data(dat.collins1985a))
### calculate (log) odds ratio and sampling variance
dat <- escalc(measure="OR", ai=xci, n1i=nci, ci=xti, n2i=nti, data=dat, to="all")
summary(dat, digits=2, transf=exp)
### meta-analysis of log odds ratios using Peto's method
res <- rma.peto(ai=xci, n1i=nci, ci=xti, n2i=nti, data=dat)
summary(res)
### meta-analysis of log odds ratios using conditional logistic regression model
res <- rma.glmm(measure="OR", ai=xci, n1i=nci, ci=xti, n2i=nti, data=dat,
model="CM.EL", method="FE")
summary(res)
### plot the log-likelihoods of the odds ratios
llplot(measure="OR", ai=xci, n1i=nci, ci=xti, n2i=nti, data=dat,
lwd=1, refline=NA, xlim=c(-4,4), drop00=FALSE)
### meta-analysis of log odds ratios using conditional logistic regression model
res <- rma.glmm(measure="OR", ai=xci, n1i=nci, ci=xti, n2i=nti, data=dat,
model="CM.EL", method="ML")
summary(res)
Run the code above in your browser using DataLab