Learn R Programming

⚠️There's a newer version (1.3.2) of this package.Take me there.

yardstick

Overview

yardstick is a package to estimate how well models are working using tidy data principles. See the package webpage for more information.

Installation

To install the package:

install.packages("yardstick")

# Development version:
# install.packages("pak")
pak::pak("tidymodels/yardstick")

Two class metric

For example, suppose you create a classification model and predict on a new data set. You might have data that looks like this:

library(yardstick)
library(dplyr)

head(two_class_example)
#>    truth  Class1   Class2 predicted
#> 1 Class2 0.00359 0.996411    Class2
#> 2 Class1 0.67862 0.321379    Class1
#> 3 Class2 0.11089 0.889106    Class2
#> 4 Class1 0.73516 0.264838    Class1
#> 5 Class2 0.01624 0.983760    Class2
#> 6 Class1 0.99928 0.000725    Class1

You can use a dplyr-like syntax to compute common performance characteristics of the model and get them back in a data frame:

metrics(two_class_example, truth, predicted)
#> # A tibble: 2 × 3
#>   .metric  .estimator .estimate
#>   <chr>    <chr>          <dbl>
#> 1 accuracy binary         0.838
#> 2 kap      binary         0.675

# or

two_class_example %>%
  roc_auc(truth, Class1)
#> # A tibble: 1 × 3
#>   .metric .estimator .estimate
#>   <chr>   <chr>          <dbl>
#> 1 roc_auc binary         0.939

Multiclass metrics

All classification metrics have at least one multiclass extension, with many of them having multiple ways to calculate multiclass metrics.

data("hpc_cv")
hpc_cv <- as_tibble(hpc_cv)
hpc_cv
#> # A tibble: 3,467 × 7
#>    obs   pred     VF      F       M          L Resample
#>    <fct> <fct> <dbl>  <dbl>   <dbl>      <dbl> <chr>   
#>  1 VF    VF    0.914 0.0779 0.00848 0.0000199  Fold01  
#>  2 VF    VF    0.938 0.0571 0.00482 0.0000101  Fold01  
#>  3 VF    VF    0.947 0.0495 0.00316 0.00000500 Fold01  
#>  4 VF    VF    0.929 0.0653 0.00579 0.0000156  Fold01  
#>  5 VF    VF    0.942 0.0543 0.00381 0.00000729 Fold01  
#>  6 VF    VF    0.951 0.0462 0.00272 0.00000384 Fold01  
#>  7 VF    VF    0.914 0.0782 0.00767 0.0000354  Fold01  
#>  8 VF    VF    0.918 0.0744 0.00726 0.0000157  Fold01  
#>  9 VF    VF    0.843 0.128  0.0296  0.000192   Fold01  
#> 10 VF    VF    0.920 0.0728 0.00703 0.0000147  Fold01  
#> # ℹ 3,457 more rows
# Macro averaged multiclass precision
precision(hpc_cv, obs, pred)
#> # A tibble: 1 × 3
#>   .metric   .estimator .estimate
#>   <chr>     <chr>          <dbl>
#> 1 precision macro          0.631

# Micro averaged multiclass precision
precision(hpc_cv, obs, pred, estimator = "micro")
#> # A tibble: 1 × 3
#>   .metric   .estimator .estimate
#>   <chr>     <chr>          <dbl>
#> 1 precision micro          0.709

Calculating metrics on resamples

If you have multiple resamples of a model, you can use a metric on a grouped data frame to calculate the metric across all resamples at once.

This calculates multiclass ROC AUC using the method described in Hand, Till (2001), and does it across all 10 resamples at once.

hpc_cv %>%
  group_by(Resample) %>%
  roc_auc(obs, VF:L)
#> # A tibble: 10 × 4
#>    Resample .metric .estimator .estimate
#>    <chr>    <chr>   <chr>          <dbl>
#>  1 Fold01   roc_auc hand_till      0.813
#>  2 Fold02   roc_auc hand_till      0.817
#>  3 Fold03   roc_auc hand_till      0.869
#>  4 Fold04   roc_auc hand_till      0.849
#>  5 Fold05   roc_auc hand_till      0.811
#>  6 Fold06   roc_auc hand_till      0.836
#>  7 Fold07   roc_auc hand_till      0.825
#>  8 Fold08   roc_auc hand_till      0.846
#>  9 Fold09   roc_auc hand_till      0.828
#> 10 Fold10   roc_auc hand_till      0.812

Autoplot methods for easy visualization

Curve based methods such as roc_curve(), pr_curve() and gain_curve() all have ggplot2::autoplot() methods that allow for powerful and easy visualization.

library(ggplot2)

hpc_cv %>%
  group_by(Resample) %>%
  roc_curve(obs, VF:L) %>%
  autoplot()

Contributing

This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Copy Link

Version

Install

install.packages('yardstick')

Monthly Downloads

37,781

Version

1.2.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Emil Hvitfeldt

Last Published

April 21st, 2023

Functions in yardstick (1.2.0)

gain_capture

Gain capture
f_meas

F Measure
developer-helpers

Developer helpers
conf_mat

Confusion Matrix for Categorical Data
detection_prevalence

Detection prevalence
lift_curve

Lift curve
mcc

Matthews correlation coefficient
gain_curve

Gain curve
mase

Mean absolute scaled error
lung_surv

Survival Analysis Results
huber_loss_pseudo

Psuedo-Huber Loss
iic

Index of ideality of correlation
mape

Mean absolute percent error
metrics

General Function to Estimate Performance
mae

Mean absolute error
metric_vec_template

Developer function for calling new metrics
huber_loss

Huber loss
hpc_cv

Multiclass Probability Predictions
msd

Mean signed deviation
metric-summarizers

Developer function for summarizing new metrics
metric_set

Combine metric functions
new-metric

Construct a new metric function
j_index

J-index
kap

Kappa
reexports

Objects exported from other packages
npv

Negative predictive value
ppv

Positive predictive value
rsq

R squared
rmse

Root mean squared error
poisson_log_loss

Mean log loss for Poisson data
pathology

Liver Pathology Data
precision

Precision
rsq_trad

R squared - traditional
metric_summarizer

Developer function for summarizing new metrics
metric_tweak

Tweak a metric function
recall

Recall
rpd

Ratio of performance to deviation
rpiq

Ratio of performance to inter-quartile
mpe

Mean percentage error
mn_log_loss

Mean log loss for multinomial data
roc_auc

Area under the receiver operator curve
roc_auc_survival

Time-Dependent ROC AUC for Censored Data
summary.conf_mat

Summary Statistics for Confusion Matrices
yardstick_remove_missing

Developer function for handling missing values in new metrics
two_class_example

Two Class Predictions
yardstick-package

yardstick: Tidy Characterizations of Model Performance
roc_aunp

Area under the ROC curve of each class against the rest, using the a priori class distribution
roc_aunu

Area under the ROC curve of each class against the rest, using the uniform class distribution
pr_auc

Area under the precision recall curve
sens

Sensitivity
pr_curve

Precision recall curve
roc_curve

Receiver operator curve
roc_curve_survival

Time-Dependent ROC surve for Censored Data
spec

Specificity
solubility_test

Solubility Predictions from MARS Model
smape

Symmetric mean absolute percentage error
accuracy

Accuracy
classification_cost

Costs function for poor classification
bal_accuracy

Balanced accuracy
brier_survival_integrated

Integrated Brier score for right censored data
average_precision

Area under the precision recall curve
brier_class

Brier score for classification models
ccc

Concordance correlation coefficient
check_metric

Developer function for checking inputs in new metrics
brier_survival

Time-Dependent Brier score for right censored data
concordance_survival

Concordance index for right-censored data