Learn R Programming

BayesianFROC (version 0.2.1)

ddddd: MRMC; Model did not converge both null model

Description

This is a subset of dd In the past, this model did not converge in the Model_MRMC.stan, thus I made the new stan file to get convergence estimates and named the stan file Model_Hiera_OneModalityMultipleReader_TargetFormulation.stan. Thus, even if the number of modalityt is 1, we can pool the AUCs over all readers by using this new model. The author believes this pooling is the most natural, primitive, simple way.

ddddd$M

1 modality

ddddd$C

5 Confidence levels

ddddd$Q

4 readers

Arguments

Details

The model did not converge both null model and alternative model in 2019 Jun 21.

Contents of dddd

NL = 142 (Number of Lesions)

NI = 199 (Number of Images)#'

Contents:

Multiple readers and multiple modalities case, i.e., MRMC case

---------------------------------------------------------------------------------------------------

ModalityID ReaderID Confidence levels No. of false alarms No. of hits.
q m c f h
-------------- ------------- ------------------------ ------------------- ----------------
1 1 5 0 50
1 1 4 4 30
1 1 3 20 11
1 1 2 29 5
1 1 1 21 1
1 2 5 0 15
1 2 4 0 29
1 2 3 6 29
1 2 2 15 1
1 2 1 22 0
1 3 5 1 39
1 3 4 15 31
1 3 3 18 8
1 3 2 31 10
1 3 1 19 3
1 4 5 1 10
1 4 4 2 8
1 4 3 4 25
1 4 2 16 45
1 4 1 17 14

---------------------------------------------------------------------------------------------------

References

Example data of Jafroc software

See Also

dataList.Chakra.Web dataList.Chakra.Web.orderd dd

Examples

Run this code
# NOT RUN {

#----------------------------------------------------------------------------------------
#                        Show data by table
#----------------------------------------------------------------------------------------



                        viewdata(BayesianFROC::ddddd)




####1#### ####2#### ####3#### ####4#### ####5#### ####6#### ####7#### ####8#### ####9####
#----------------------------------------------------------------------------------------
#                       make an object dddd from an object dd
#----------------------------------------------------------------------------------------



           ddd  <-  data.frame(m=dd$m,q=dd$q,c=dd$c,h=dd$h,f=dd$f)

           dddd <-  ddd[ddd$m < 2,]  #  Reduce the dataset ddd, i.e., dd

ddd <- list(
           m=dddd$m,
           q=dddd$q,
           c=dddd$c,
           h=dddd$h,
           f=dddd$f,
           NL=142,
           C=max(dddd$c),
           M=max(dddd$m),
           Q=max(dddd$q)
        )

          ddddd <-ddd




# }
# NOT RUN {
#----------------------------------------------------------------------------------------
#                      Pool AUCs over all readers
#----------------------------------------------------------------------------------------


  fit <- fit_Bayesian_FROC(ddddd)

  DrawCurves(fit,readerID = c(1,2,3,4))


#  With pain 2019 Sept 29
# }
# NOT RUN {



# }

Run the code above in your browser using DataLab