Default conjugate prior specification for Gaussian mixtures.
defaultPrior(data, G, modelName, …)
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
The number of mixture components.
A character string indicating the model:
"E"
: equal variance (univariate)
"V"
: variable variance (univariate)
"EII"
: spherical, equal volume
"VII"
: spherical, unequal volume
"EEI"
: diagonal, equal volume and shape
"VEI"
: diagonal, varying volume, equal shape
"EVI"
: diagonal, equal volume, varying shape
"VVI"
: diagonal, varying volume and shape
"EEE"
: ellipsoidal, equal volume, shape, and orientation
"EEV"
: ellipsoidal, equal volume and equal shape
"VEV"
: ellipsoidal, equal shape
"VVV"
: ellipsoidal, varying volume, shape, and orientation.
A description of the models above is provided in the help of
mclustModelNames
. Note that in the multivariate case
only 10 out of 14 models may be used in conjunction with a prior, i.e.
those available in MCLUST up to version 4.4.
One or more of the following:
dof
The degrees of freedom for the prior on the variance.
The default is d + 2
, where d
is
the dimension of the data.
scale
The scale parameter for the prior on the variance.
The default is var(data)/G^(2/d)
,
where d
is the dimension of the data.
shrinkage
The shrinkage parameter for the prior on the mean. The default value is 0.01. If 0 or NA, no prior is assumed for the mean.
mean
The mean parameter for the prior.
The default value is colMeans(data)
.
A list giving the prior degrees of freedom, scale, shrinkage, and mean.
defaultPrior
is a function whose default is to output the
default prior specification for EM within MCLUST.
Furthermore, defaultPrior
can be used as a template to specify
alternative parameters for a conjugate prior.
C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611-631.
C. Fraley and A. E. Raftery (2005, revised 2009). Bayesian regularization for normal mixture estimation and model-based clustering. Technical Report, Department of Statistics, University of Washington.
C. Fraley and A. E. Raftery (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181.
# NOT RUN {
# default prior
irisBIC <- mclustBIC(iris[,-5], prior = priorControl())
summary(irisBIC, iris[,-5])
# equivalent to previous example
irisBIC <- mclustBIC(iris[,-5],
prior = priorControl(functionName = "defaultPrior"))
summary(irisBIC, iris[,-5])
# no prior on the mean; default prior on variance
irisBIC <- mclustBIC(iris[,-5], prior = priorControl(shrinkage = 0))
summary(irisBIC, iris[,-5])
# equivalent to previous example
irisBIC <- mclustBIC(iris[,-5], prior =
priorControl(functionName="defaultPrior", shrinkage=0))
summary(irisBIC, iris[,-5])
defaultPrior( iris[-5], G = 3, modelName = "VVV")
# }
Run the code above in your browser using DataLab