Last chance! 50% off unlimited learning
Sale ends in
densiTree(x, type = "cladogram", alpha = 1/length(x), consensus = NULL, optim = FALSE, scaleX = FALSE, col = 1, width = 1, cex = 0.8, ...)
multiPhylo
.densiTree
computes a rooted mrp.supertree as a backbone. This should avoid too many unnecessary crossings of edges.
Trees should be rooted, other wise the output may not make sense.plot.phylo
, plot.networx
data(Laurasiatherian)
set.seed(1)
bs <- bootstrap.phyDat(Laurasiatherian, FUN = function(x)upgma(dist.hamming(x)), bs=100, multicore=FALSE)
class(bs) <- 'multiPhylo'
bs = .compressTipLabel(bs)
# cladogram nice to show topological differences
densiTree(bs, optim=TRUE, type="cladogram", col="blue")
densiTree(bs, optim=TRUE, type="phylogram", col="green")
# phylogram are nice to show different age estimates
require(PhyloOrchard)
data(BinindaEmondsEtAl2007)
BinindaEmondsEtAl2007 <- .compressTipLabel(BinindaEmondsEtAl2007)
densiTree(BinindaEmondsEtAl2007, type="phylogram", col="red")
Run the code above in your browser using DataLab