density.circular
computes kernel density estimates
with the given kernel and bandwidth for circular data.## S3 method for class 'circular':
density(x, z, bw, adjust = 1, type = c("K", "L"),
kernel = c("vonmises", "wrappednormal"), na.rm = FALSE, from = 0,
to = 2 * pi, n = 512, K = 10, ...)
## S3 method for class 'density.circular':
print(x, digits = NULL, \dots)
from
, to
and n
.kernel
is vonmises
the bandwidth is equal to the concentration
parameter.adjust*bw
. This
makes it easy to specify values like ``half the default bandwidth''."vonmises"
or
"wrappednormal"
, that are kernels of type
"K"
.TRUE
, missing values are removed from
x
. If FALSE
any missing values cause an error."density.circular"
whose
underlying structure is a list containing the following components.n
coordinates of the points where the density is
estimated.x
argument.J. Klemel"a (2000). Estimation of densities and derivatives of densities with directioinal data, Journal of Multivariate Analysis, 73, 18-40.
V.R. Prayag and A.P. Gore (1990). Density Estimation for Randomly Distributed Circular Objects, Metrika, 1990, 37, 63-69.
P. Hall and G.S. Watson and J. Cabrera (1987). Kernel Density Estimation with Spherical Data, Biometrika, 74, 4, 751--762.
plot.density.circular
and lines.density.circular
x <- rvonmises(n=100, mu=pi, kappa=2)
res25 <- density(x, bw=25)
plot(res25, points.plot=TRUE, xlim=c(-1.5,1))
res50 <- density(x, bw=25, adjust=2)
lines(res50, col=2)
Run the code above in your browser using DataLab