# Consider quantitative data (i.e. QuantData) from yeast study.
# A time course study with ten time points of interests and three biological replicates.
QuantData<-dataProcess(SRMRawData)
head(QuantData$ProcessedData)
## based on multiple comparisons (T1 vs T3; T1 vs T7; T1 vs T9)
comparison1<-matrix(c(-1,0,1,0,0,0,0,0,0,0),nrow=1)
comparison2<-matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1)
comparison3<-matrix(c(-1,0,0,0,0,0,0,0,1,0),nrow=1)
comparison<-rbind(comparison1,comparison2, comparison3)
row.names(comparison)<-c("T3-T1","T7-T1","T9-T1")
testResultMultiComparisons<-groupComparison(contrast.matrix=comparison,data=QuantData)
## Calculate sample size for future experiments:
#(1) Minimal number of biological replicates per condition
designSampleSize(data=testResultMultiComparisons$fittedmodel,numSample=TRUE,
desiredFC=c(1.25,1.75),FDR=0.05,power=0.8)
#(2) Power calculation
designSampleSize(data=testResultMultiComparisons$fittedmodel,numSample=2,
desiredFC=c(1.25,1.75),FDR=0.05,power=TRUE)
Run the code above in your browser using DataLab