.is.vector.lattice(x)
.is.consistent(lattice, support, eq.space = TRUE)
.make.lattice.es.vector(x)
.inArgs(arg, fct)
.isEqual(p0, p1, tol = min( getdistrOption("TruncQuantile")/2, .Machine$double.eps^.7))
.isEqual01(x)
.isIn(p0, pmat, tol = min( getdistrOption("TruncQuantile")/2, .Machine$double.eps^.7 ))
.isInteger(x, tol = .Machine$double.eps)
.isNatural(x, tol = .Machine$double.eps)
.isNatural0(x, tol = .Machine$double.eps)
.setEqual(x, y, tol = 1e-7)
.presubs(inp, frompat, topat)
.makeD(object, argList,  stand = NULL, fac = NULL)
.makeP(object, argList,  sign = TRUE, correct = NULL, fac = NULL, fac2 = NULL)
.makeQ(object, lastCall, sign = TRUE, Cont = TRUE)
.plusm(e1, e2, Dclass = "DiscreteDistribution")
.multm(e1, e2, Dclass = "DiscreteDistribution")
.notwithLArg(D)
.getObjName(i = 1)
.discretizeP(D, lower, upper, h)
.fm(x,f)
.fM(x,f)
.fM2(x,f)
.makeDd(x,y, yleft, yright)
.makePd(x,y, yleft, yright)
.makeQd(x,y, yleft, yright)
.makeQc(x,y, yleft, yright)
.makeDNew(x, dx, h = NULL, Cont = TRUE, standM = "sum")
.makePNew(x, dx, h = NULL, notwithLLarg = FALSE, Cont = TRUE, myPf = NULL, pxl = NULL, pxu = NULL)
.makeQNew(x, px.l, px.u, notwithLLarg = FALSE, yL , yR, Cont = TRUE)
.mergegaps(gaps, support)
.mergegaps2(gaps1, gaps2)
.consolidategaps(gaps)
.pmixfun(mixDistr, mixCoeff, leftright = "right")
.dmixfun(mixDistr, mixCoeff, withStand = FALSE, supp = NULL)
.rmixfun(mixDistr, mixCoeff)
.qmixfun(mixDistr, mixCoeff, Cont = TRUE, pnew, gaps = NULL, leftright = "left")
.del0dmixfun(mixDistr)
.loupmixfun(mixDistr)
.ULC.cast(x)
.expm.d(e1)
.expm.c(e1)
.logm.d(e1)
.logm.c(e1)
.P2D (p, xx, ql, qu, ngrid = getdistrOption("DefaultNrGridPoints"))
.P2Q (p, xx, ql,qu, ngrid = getdistrOption("DefaultNrGridPoints"),  qL = -Inf, qU = Inf)
.D2P (d, xx, ql, qu,  ngrid = getdistrOption("DefaultNrGridPoints"))
.Q2P (q, ngrid = getdistrOption("DefaultNrGridPoints"))
.csimpsum(fx)
.primefun(f,x, nm = NULL)
.IssueWarn(Arith,Sim)
.List(list0)
.fillList(list0, len=length(list0))
.trunc.up(object, upper)
.trunc.low(object, lower)
.modifyqgaps(pfun, qfun, gaps, leftright = "left")
.DistrCollapse(support, prob, eps = getdistrOption("DistrResolution"))
.EuclidAlgo(n1,n2)
.getCommonWidth(x1,x2, tol=.Machine$double.eps)
.convDiscrDiscr(e1,e2)
.inWithTol(x,y,tol=.Machine$double.eps)
.panel.mingle(dots,element)
devNew(...).ULC.cast) an object of class "AcDcLcDistribution"Lattice)m(object)  
        where  m is in d,p,qq(e1) is further transformedTRUE if object is continuouslog.p, lower.tail 
  arguments for p,q-methods of first operand?x,y, yleft, yright 
  (as approxfun): 
              if given: replaces approxfun as interpolation method for 
              continuos distributionsfixed = TRUE) to be matched in the
          given character vector.  Coerced by as.character to a
          character string if possible; (as argument pattern in 
          gsub --- but possibly of length >1)..presubs. 
          Coerced to character if possible.  For fixed = FALSE this
          can include backreferences "\1" to "\9" to 
          parenthesized subexpressions of pattern.  For 
          perl = TRUE only, it can
          also contain "\U" or "\L" to convert the rest of the
          replacement to upper or lower case; (as argument replacement 
          in gsub--- but possibly of length >1).m with two columns, 
             such that t(m), interpreted as vector, is orderedUnivarDistrListnumeric; a probability vectorfunction(q, lower.tail = TRUE, log.p = FALSE
 realizing slot p in a distribution object.TRUE a standardization is made such
 that the sum of the values of the result evaluated at argument supp is 1numeric; if withStand is TRUE used
 to standardize such that the result is a probability density.p of an object of class "AbscontDistribution"d of an object of class "AbscontDistribution"q of an object of class "AbscontDistribution"p, d to be
 evaluated atgetdistrOption("TruncQuantile")-quantile of
 the distribution; also, if argument xx is missing, left and right endpoint
 of a regular grid of ngrid gridpoints to be used in place of xx..withArith of a distribution object,
              or logically-``any'' of these slots in a collection of such objects.withSim of a distribution object,
              or logically-``any'' of these slots in a collection of such objectsq: if partially matched to "right" 
                  function will return the right continuous version, else
                  the left continuous version; for slot p: if partially 
                  matched to "left" the left continuous version, else
                  the right continuous version;.EuclidAlgo.EuclidAlgo.getCommonWidth.getCommonWidth... argument... argumentlogical (length 1).logical (length 1).logical (length 1).Lattice.logical (length 1).logical.numeric of length 1.DiscreteDistribution or 
       AbscontDistribution according to argument DClass.character.numeric --- the probabilities for the grid-values.x, y, yleft, yright.x, log = FALSE.q, lower.tail = TRUE, 
       log.p = FALSE.p, lower.tail = TRUE, 
       log.p = FALSE.logical (same length as argument x).gaps-matrix, i.e.; a matrix m with two columns, 
              such that t(m), interpreted as vector, is ordered.p for a mixing distribution, i.e. a function 
                function(q, lower.tail = TRUE, log.p = FALSE), which
                is  the cdf of the distribution.d for a mixing distribution, i.e. a function 
                function(x, log = FALSE), which
                is  the density of the distribution.q for a mixing distribution, i.e. a function 
                function(p, lower.tail = TRUE, log.p = FALSE), which
                is  the quantile function of the distribution.r for a mixing distribution, i.e. a function 
                function(n) generating r.v.'s according to the distribution.mixDistr.qL, the minimal value of 
q(x)(0), ql, the minimal value of 
q(x)(getdistrOption("TruncQuantile")), qU, the maximal value of 
q(x)(1), qu, the maximal value of 
q(x)(getdistrOption("TruncQuantile"), lower.tail = FALSE),
x running through the members of mixDistr in each case."UnivarLebDecDistribution"."DiscreteDistribution"."AbscontDistribution".d as function function(x,  log = FALSE).q as function function(p, 
            lower.tail = TRUE, log.p = FALSE)p as function function(q, 
            lower.tail = TRUE, log.p = FALSE).r,p,d,q (in this order).support is the (original; already sorted) support
       and prob a corresponding probability vector of same length.
       Criterium for collapsing: a distance smaller than argument
       eps.
       x for the
    matches (up to tolerance) with vector y.panel.first,
panel.last; returns the evaluated argument element within dots,
if it is a symbol; else if it can be interpreted as a call, and if the top
call is list, it returns a list of the items of the call to list,
unevaluated, and otherwise the unchanged argument.NULL..is.vector.lattice checks whether a given vector x is equally 
spaced.
.is.consistent checks whether a given support vector support is 
consistent to a given lattice lattice --- with or without checking
if support is equally spaced.  .make.lattice.es.vector 
makes an object of class Lattice out of a given (equally spaced) vector 
x..inArgs checks whether an argument arg is a formal argument of 
     fct --- not vectorized.
.isEqual checks whether p0 and p1 are equal to given
      tolerance.
.isIn checks whether p0 lies in any of the intervals given by
     matrix pmat to given tolerance.
.isEqual01(x) checks whether x is 0 or 1 to given tolerance. 
.setEqual sets all elements of x which are equal to some element of y 
         up to tolerance tol, to exactly the respective element of y. 
         
.notwithLArg checks whether object D was generated by simulations 
or if its slots p,q do not have lower.tail arguments.
.getObjName returns the name of the object in the ith operand.
.discretizeP discretizes D to a grid of probabilities from 
     lower to upper with width h.   
.fm, .fM return the smallest / biggest value in (0,1) such that
  f(x) is finite; .fM2 is a variant of .fM using a 
  lower.tail = FALSE argument.
.makeD, .makeP, .makeQ generate slots p,d,q for
    binary operations e1 /op/ e2 for a distribution object e1 
    and a numeric e2 ---for the moment only /op/'s 
     +,-,*,/ are implemented.
.plusm, .multm more specifically use .makeD, .makeP, 
.makeQ to generate slots p,d,q for +, *, 
      respectively. 
.makeDd, .makePd, .makeQd provide discrete analogues to 
approxfun for interpolation at non grid-values 
.makeQc is an analogue to makeQd for absolutely continuous 
distributions using approxfun. 
.makeDNew generates slot d for a new distribution object.
In case of a discrete distribution it produces a step function with 
stepfun (using .makeDd) and standardizes to 1 by summation.
In case of a continuous distribution it produces a density function with 
approxfun and standardizes to 1 by integration if the latter fails,
  it uses a trapezoid rule / summation for this purpose.
.makePNew generates slot p for a new distribution object.
In case of a discrete distribution it produces a step function from 
cumsum applied to dx ---or from pxl if this is given, with 
stepfun (using .makePd). 
In case of a continuous distribution it produces a cdf with 
approxfun. In case of RtoDPQ, approxfun is replaced by
myPf which calls ecdf directly.
.makeQNew generates slot q for a new distribution object.
In case of a discrete distribution it produces a step function 
(using .makeQd). Special care is taken for left continuity...
In case of a continuous distribution it produces a quantile function with 
approxfun. 
.isInteger, .isNatural, and .isNatural0 test for each 
coordinate of argument x whether it
is integer [natural / natural or 0] or not.
.mergegaps modifies the gaps matrix of an a.c. distribution according to
the support slot of a discrete distribution; if necessary, a gap interval
[a,b] is split into [a,c],[c,b] if a.mergegaps2 merges two gap matrices of two a.c. distributions X1 
and X2 such that in the intervals of the resulting gap matrix, 
neither X1 nor X2 carries mass.
.consolidategaps consolidates a gap matrix, i.e. joins adjacent 
gap intervals.  
.pmixfun, .dmixfun, .rmixfun, and .qmixfun
fill the slots p, d, r, and q
of a corresponding mixing distribution according to the arguments
in mixDistr, mixCoeff.
.loupmixfun finds commun lower and upper bounds for the support of
the mixing distribution.
.del0dmixfun sets (if slot d.ac is not NULL) the return
value of slot function d.ac of mixDistr 
for argument 0 to 0.
.ULC.cast coerces an object of class "AcDcLcDistribution" to
class "UnivarLebDecDistribution", using simplifyD.
.expm.d,.expm.c for discrete, resp. a.c. argument e1 fill the 
slots p, d, r, and q
of the transformation exp(e1) exactly.
.logm.d,.logm.c for discrete, resp. a.c. argument e1 fill the 
slots p, d, r, and q
of the transformation log(e1) exactly.
For objects of class AbscontDistribution,
.P2D and .P2Q reconstruct function slots d resp. 
q from function slot p
by means of function D1ss from package sfsmisc;
and of function .makeQNew,  respectively. The other way round, 
.D2P and .Q2P reconstruct function slot p from 
from function slots  d resp. q 
by means of function .makePNew and explicite numeric inversion,  
respectively.
.csimpsum is used internally in .makePNew to produce
a primitive function out of function evaluations by means of vectorized
Simpson quadrature method, returning already the function values
of the prime function on a grid; it is to mimick the behaviour
of cumsum. .primefun is similar but more flexible and
produces the prime function as a function.
.List checks if argument already is a list, and if so leaves it as
             it is, otherwise casts it to a list by a call to list.
.fillList fills a new list with the elements of a given list list0
                 until length len is reached using recycling if necessary.
                 Argument list0 is cast to list by a call
                 to .List if necessary.
.trunc.up, .trunc.low  provide common routines for
classes DiscreteDistribution and AbscontDistribution for 
one-sided truncation, using (for slot r) Peter Dalgaard's clever 
log-tricks as indicated in 
http://article.gmane.org/gmane.comp.lang.r.general/126112.
.modifyqgaps modifies slot q for objects of class 
     AbscontDistribution in the presence of gaps, i.e.; if slot
     gaps is not NULL. If argument leftright does not
     partially match "right" (default) returns the left continuous
     version of the quantile function, else the right continuous one.
 
.EuclidAlgo computes the greatest common divisor of two integers by 
      means of the Euclidean algorithm.
.getCommonWidth for two lattices with widths x1 and x2
      computes the smallest common lattice width for convolution.
.convDiscrDiscr computes the convolution of two discrete distributions by
    brute force.
.inWithTol works like %in% but with a given tolerance.
.panel.mingle is used for mingling arguments panel.first,
panel.last in a plot; it returns the evaluated argument element
within dots, if it is a symbol; else if it can be interpreted as a call, and if
the top call is list, it returns a list of the items of the call to list,
unevaluated, and otherwise the unchanged argument.
devNew opens a new device. This function is for back compatibility
with R versions < 2.8.0.
AbscontDistribution,
DiscreteDistribution,
LatticeDistribution,
RtoDPQ,
RtoDPQ.d,
convpow,
operators,
plot-methods
dev.new