
"rma"
.## S3 method for class 'rma':
fitstats(object, REML=NULL, \dots)
## S3 method for class 'rma':
logLik(object, REML, \dots)
## S3 method for class 'rma':
deviance(object, REML, \dots)
## S3 method for class 'rma':
AIC(object, \dots, k=2)
## S3 method for class 'rma':
BIC(object, \dots)
"rma"
.TRUE
if object
was fitted with k=2
is the classical AIC. See AIC
for more details.fitstats.rma
, a column vector with the (restricted) log likelihood, deviance, AIC, and BIC values.
For logLik.rma
, an object of class "logLik"
, providing the (restricted) log likelihood of the model evaluated at the estimated coefficient(s).
For deviance.rma
, a numeric value with the corresponding deviance.
For AIC.rma
, a numeric value with the corresponding AIC.
For BIC.rma
, a numeric value with the corresponding BIC.rma.uni
, rma.mh
, rma.peto
, anova.rma.uni
### load BCG vaccine data
data(dat.bcg)
### meta-analysis of the log relative risks using a random-effects model
res1 <- rma(ai=tpos, bi=tneg, ci=cpos, di=cneg,
data=dat.bcg, measure="RR", method="ML")
### mixed-effects model with two moderators (latitude and publication year)
res2 <- rma(ai=tpos, bi=tneg, ci=cpos, di=cneg, mods=cbind(ablat, year),
data=dat.bcg, measure="RR", method="ML")
fitstats(res1)
fitstats(res2)
logLik(res1)
logLik(res2)
deviance(res1)
deviance(res2)
AIC(res1)
AIC(res2)
BIC(res1)
BIC(res2)
Run the code above in your browser using DataLab