diagplot.metaseqr(object, sample.list, annotation = NULL,
contrast.list = NULL, p.list = NULL,
thresholds = list(p = 0.05, f = 1),
diagplot.type = c("mds", "biodetection", "countsbio", "saturation",
"readnoise", "rnacomp", "correl", "pairs", "boxplot", "gcbias",
"lengthbias", "meandiff", "meanvar", "deheatmap", "volcano",
"biodist", "filtered", "venn"),
is.norm = FALSE, output = "x11", path = NULL, ...)
diagplot.metaseqr
plotting systems but not every
plot is meaningful. For example, it's meaningless to
create a "biodist"
plot for a count matrix before
normalization or statistical testing.get.annotation
or a
subset of possibly embedded annotation with the input
counts table. This parameter is optional and required
only when diagplot.type is any of "biodetection"
,
"countsbio"
, "saturation"
,
"rnacomp"
, "readnoise"
, "biodist"
,
"gcbias"
, "lengthbias"
or
"filtered"
.make.contrast.list
or just
the vector of contrasts as defined in the main help page
of metaseqr
. This parameter is optional and
required only when diagplot.type
is any of
"deheatmap"
, "volcano"
or
"biodist"
.stat.*
methods of the
metaseqr package. This parameter is optional and required
only when diagplot.type
is any of
"deheatmap"
, "volcano"
or
"biodist"
."p"
and
"f"
which are the p-value and the fold change
cutoff when diagplot.type="volcano"
."mds"
,
"biodetection"
, "countsbio"
,
"saturation"
, "rnacomp"
, "boxplot"
,
"gcbias"
, "lengthbias"
, "meandiff"
,
"meanvar"
, "deheatmap"
, "volcano"
,
"biodist"
, "filtered"
, "readnoise"
,
"venn"
, "correl"
, "pairwise"
. For a
brief description of these plots please see the main
metaseqr
help page."png"
,
"jpg"
, "bmp"
, "pdf"
, "ps"
or
"json"
. The latter is currently available for the
creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library.
The default plotting ("x11"
) is not supported due
to instability in certain devices.par
."x11"
).require(DESeq)
data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
diagplot.metaseqr(data.matrix,sample.list,diagplot.type=c("mds","boxplot"))
norm.args <- get.defaults("normalization","deseq")
object <- normalize.deseq(data.matrix,sample.list,norm.args)
diagplot.metaseqr(object,sample.list,diagplot.type="boxplot")
## More
#p <- stat.deseq(object,sample.list)
#diagplot.metaseqr(object,sample.list,contrast.list=contrast,p.list=p,
# diagplot.type="volcano")
Run the code above in your browser using DataLab