diagplot.metaseqr(object, sample.list, annotation = NULL,
contrast.list = NULL, p.list = NULL,
thresholds = list(p = 0.05, f = 1),
diagplot.type = c("mds", "biodetection", "countsbio", "saturation",
"readnoise", "rnacomp", "correl", "pairs", "boxplot", "gcbias",
"lengthbias", "meandiff", "meanvar", "deheatmap", "volcano",
"biodist", "filtered", "venn"),
is.norm = FALSE, output = "x11", path = NULL, ...)diagplot.metaseqr plotting systems but not every
plot is meaningful. For example, it's meaningless to
create a "biodist" plot for a count matrix before
normalization or statistical testing.get.annotation or a
subset of possibly embedded annotation with the input
counts table. This parameter is optional and required
only when diagplot.type is any of "biodetection",
"countsbio", "saturation",
"rnacomp", "readnoise", "biodist",
"gcbias", "lengthbias" or
"filtered".make.contrast.list or just
the vector of contrasts as defined in the main help page
of metaseqr. This parameter is optional and
required only when diagplot.type is any of
"deheatmap", "volcano" or
"biodist".stat.* methods of the
metaseqr package. This parameter is optional and required
only when diagplot.type is any of
"deheatmap", "volcano" or
"biodist"."p" and
"f" which are the p-value and the fold change
cutoff when diagplot.type="volcano"."mds",
"biodetection", "countsbio",
"saturation", "rnacomp", "boxplot",
"gcbias", "lengthbias", "meandiff",
"meanvar", "deheatmap", "volcano",
"biodist", "filtered", "readnoise",
"venn", "correl", "pairwise". For a
brief description of these plots please see the main
metaseqr help page."png",
"jpg", "bmp", "pdf", "ps" or
"json". The latter is currently available for the
creation of interactive volcano plots only when reporting
the output, through the highcharts javascript library.
The default plotting ("x11") is not supported due
to instability in certain devices.par."x11").require(DESeq)
data.matrix <- counts(makeExampleCountDataSet())
sample.list <- list(A=c("A1","A2"),B=c("B1","B2","B3"))
contrast <- "A_vs_B"
diagplot.metaseqr(data.matrix,sample.list,diagplot.type=c("mds","boxplot"))
norm.args <- get.defaults("normalization","deseq")
object <- normalize.deseq(data.matrix,sample.list,norm.args)
diagplot.metaseqr(object,sample.list,diagplot.type="boxplot")
## More
#p <- stat.deseq(object,sample.list)
#diagplot.metaseqr(object,sample.list,contrast.list=contrast,p.list=p,
# diagplot.type="volcano")Run the code above in your browser using DataLab