Learn R Programming

sirt (version 0.36-30)

dif.logistic.regression: Differential Item Functioning using Logistic Regression Analysis

Description

This function estimates differential item functioning using a logistic regression analysis (Zumbo, 1999).

Usage

dif.logistic.regression(dat, group, score,quant=1.645)

Arguments

dat
Data frame with dichotomous item responses
group
Group identifier
score
Ability estimate, e.g. the WLE.
quant
Used quantile of the normal distribution for assessing statistical significance

Value

  • A data frame with following variables:
  • itemnrNumeric index of the item
  • sortDIFindexRank of item with respect to the uniform DIF (from negative to positive values)
  • itemItem name
  • NSample size per item
  • RValue of group variable for reference group
  • FValue of group variable for focal group
  • nRSample size per item in reference group
  • nFSample size per item in focal group
  • pItem $p$ value
  • pRItem $p$ value in reference group
  • pFItem $p$ value in focal group
  • pdiffItem $p$ value differences
  • pdiff.adjAdjusted $p$ value difference
  • uniformDIFUniform DIF estimate
  • se.uniformDIFStandard error of uniform DIF
  • t.uniformDIFThe $t$ value for uniform DIF
  • sig.uniformDIFSignificance label for uniform DIF
  • DIF.ETSDIF classification according to the ETS classification system (see Details)
  • uniform.EBDIFEmpirical Bayes estimate of uniform DIF (Longford, Holland & Thayer, 1993) which takes degree of DIF standard error into account
  • DIF.SDValue of the DIF standard deviation
  • nonuniformDIFNonuniform DIF estimate
  • se.nonuniformDIFStandard error of nonuniform DIF
  • t.nonuniformDIFThe $t$ value for nonuniform DIF
  • sig.nonuniformDIFSignificance label for nonuniform DIF

Details

Items are classified into A (negligible DIF), B (moderate DIF) and C (large DIF) levels according to the ETS classification system (Longford, Holland & Thayer, 1993, p. 175). See also Monahan et al. (2007) for further DIF effect size classifications.

References

Longford, N. T., Holland, P. W., & Thayer, D. T. (1993). Stability of the MH D-DIF statistics across populations. In P. W. Holland & H. Wainer (Eds.). Differential Item Functioning (pp. 171-196). Hillsdale, NJ: Erlbaum. Monahan, P. O., McHorney, C. A., Stump, T. E., & Perkins, A. J. (2007). Odds ratio, delta, ETS classification, and standardization measures of DIF magnitude for binary logistic regression. Journal of Educational and Behavioral Statistics, 32, 92-109. Zumbo, B. D. (1999). A handbook on the theory and methods of differential item functioning (DIF): Logistic regression modeling as a unitary framework for binary and Likert-type (ordinal) item scores. Ottawa ON: Directorate of Human Resources Research and Evaluation, Department of National Defense.

See Also

For assessing DIF variance see dif.variance and dif.strata.variance See the difR package for a large collection of DIF detection methods.

Examples

Run this code
#####################################
# EXAMPLE 1: Mathematics data

data( data.math )
dat <- data.math$data
items <- grep( "M" , colnames(dat))

# estimate item parameters and WLEs
mod <- rasch.mml2( dat[,items] )
wle <- wle.rasch( dat[,items] , b=mod$item$b )$theta

# assess DIF by logistic regression
mod1 <- dif.logistic.regression( dat=dat[,items] , score=wle , group=dat$female)

# calculate DIF variance
dif1 <- dif.variance( dif=mod1$uniformDIF , se.dif = mod1$se.uniformDIF )
dif1$unweighted.DIFSD
## > dif1$unweighted.DIFSD
## [1] 0.1963958

# calculate stratified DIF variance
# stratification based on domains
dif2 <- dif.strata.variance( dif=mod1$uniformDIF , se.dif = mod1$se.uniformDIF ,
        itemcluster = data.math$item$domain )
## $unweighted.DIFSD
## [1] 0.1455916

#****
# Likelihood ratio test and graphical model test in eRm package
library(eRm)
# estimate Rasch model
res <- RM( dat[,items] )
summary(res)
# LR-test with respect to female
lrres <- LRtest(res, splitcr = dat$female)
summary(lrres)
# graphical model test
plotGOF(lrres)

Run the code above in your browser using DataLab