dispCoxReidInterpolateTagwise(y, design, offset=NULL, dispersion, trend=TRUE, AveLogCPM=NULL, min.row.sum=5, prior.df=10, span=0.3, grid.npts=11, grid.range=c(-6,6), weights=NULL)adjustedProfileLik the offset must be a matrix with the same dimension as the table of counts.getPriorN(object) gives a value for prior.n that is equivalent to giving the common likelihood 20 prior degrees of freedom in the estimation of the tag/genewise dispersion.log2(dispersion), on either side of trendline for each tag for spline grid points.edgeR context, dispCoxReidInterpolateTagwise is a low-level function called by estimateGLMTagwiseDisp.dispCoxReidInterpolateTagwise calls the function maximizeInterpolant to fit cubic spline interpolation over a tagwise grid.
McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. http://nar.oxfordjournals.org/content/40/10/4288
estimateGLMTagwiseDisp, maximizeInterpolant
y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4)
design <- matrix(1, 4, 1)
dispersion <- 0.5
d <- dispCoxReidInterpolateTagwise(y, design, dispersion=dispersion)
d
Run the code above in your browser using DataLab