distanceSlater(x, trim = 20, index = TRUE)
repgrid
object.20
). If NA
no trimming occurs. Trimming
simply saves space when displaying correlation of constructs
with long names.TRUE
). This is useful to avoid
identical row names, which may cause an error.distance
. A drawback of this measure is that it
depends on the range of the rating scale and the number of constructs used,
i. e. on the size of a grid.
An approach to standardize the euclidean distance to make it independent from
size and range of ratings and was proposed by Slater (1977, pp. 94). The
'Slater distance' is the Euclidean distance divided by the expected distance.
Slater distances bigger than 1 are greater than expected, lesser than 1 are
smaller than expected. The minimum value is 0 and values bigger than 2 are
rarely found. Slater distances have been be used to compare inter-element
distances between different grids, where the grids do not need to have the
same constructs or elements. Hartmann (1992) showed that Slater distance is
not independent of grid size. Also the distribution of the Slater distances
is asymmetric. Hence, the upper and lower limit to infer 'significance' of
distance is not symmetric. The practical relevance of Hartmann's findings
have been demonstrated by Schoeneich and Klapp (1998). To calculate
Hartmann's version of the standardized distances see
distanceHartmann
Schoeneich, F., & Klapp, B. F. (1998). Standardization of interelement distances in repertory grid technique and its consequences for psychological interpretation of self-identity plots: An empirical study. Journal of Constructivist Psychology, 11(1), 49-58.
Slater, P. (1977). The measurement of intrapersonal space by Grid technique. Vol. II. London: Wiley.
distanceHartmann
distanceSlater(bell2010)
distanceSlater(bell2010, trim=40)
d <- distanceSlater(bell2010)
print(d)
print(d, digits=4)
# using Norris and Makhlouf-Norris (problematic) cutoffs
print(d, cutoffs=c(.8, 1.2))
Run the code above in your browser using DataLab