distcritmulti(x,clustering,part=NULL,ns=10,criterion="asw",
fun="dist",metric="euclidean",
count=FALSE,seed=NULL,...)x. If NULL, subset sizes are
chosen approximately equal.part==NULL."asw" or "pearsongamma", specifies
whether the average silhouette width or the Pearson version of
Hubert's gamma is computed."dist" or "daisy", specifies
which function is used for computing dissimilarities.TRUE, the subset number just processed
is printed.NULL, result depends on
random numbers.)crit.overall,crit.sub,crit.sd,part.crit.sub, can be used to
assess stability.Kaufman, L. and Rousseeuw, P.J. (1990). "Finding Groups in Data: An Introduction to Cluster Analysis". Wiley, New York.
cluster.stats, silhouetteset.seed(20000)
face <- rFace(50,dMoNo=2,dNoEy=0,p=2)
clustering <- as.integer(attr(face,"grouping"))
distcritmulti(face,clustering,ns=3,seed=100000,criterion="pearsongamma")Run the code above in your browser using DataLab