distcritmulti(x,clustering,part=NULL,ns=10,criterion="asw",
fun="dist",metric="euclidean",
count=FALSE,seed=NULL,...)
x
. If NULL
, subset sizes are
chosen approximately equal.part==NULL
."asw"
or "pearsongamma"
, specifies
whether the average silhouette width or the Pearson version of
Hubert's gamma is computed."dist"
or "daisy"
, specifies
which function is used for computing dissimilarities.TRUE
, the subset number just processed
is printed.NULL
, result depends on
random numbers.)crit.overall,crit.sub,crit.sd,part
.crit.sub
, can be used to
assess stability.Kaufman, L. and Rousseeuw, P.J. (1990). "Finding Groups in Data: An Introduction to Cluster Analysis". Wiley, New York.
cluster.stats
, silhouette
set.seed(20000)
face <- rFace(50,dMoNo=2,dNoEy=0,p=2)
clustering <- as.integer(attr(face,"grouping"))
distcritmulti(face,clustering,ns=3,seed=100000,criterion="pearsongamma")
Run the code above in your browser using DataLab