library(poppr)
data(Pinf)
tab <- mlg.table(Pinf, plot = FALSE)
diversity_stats(tab)
## Not run: 
# # Example using the poweRlaw package to calculate the negative slope of the
# # Pareto distribution.
# 
# library("poweRlaw")
# power_law_beta <- function(x){
#   xpow <- displ(x[x > 0])                 # Generate the distribution
#   xpow$setPars(estimate_pars(xpow))       # Estimate the parameters
#   xdat <- plot(xpow, draw = FALSE)        # Extract the data
#   xlm <- lm(log(y) ~ log(x), data = xdat) # Run log-log linear model for slope
#   return(-coef(xlm)[2])
# }
# 
# Beta <- function(x){
#   x <- drop(as.matrix(x))
#   if (length(dim(x)) > 1){
#     res <- apply(x, 1, power_law_beta)
#   } else {
#     res <- power_law_beta(x)
#   }
#   return(res)
# }
# 
# diversity_stats(tab, B = Beta)
# ## End(Not run)
Run the code above in your browser using DataLab