dmsn(x, xi=rep(0,d), Omega, alpha, log=FALSE)
pmsn(x, xi=rep(0,d), Omega, alpha, ...)
rmsn(n=1, xi=rep(0,d), Omega, alpha)
dmsn
, this is either a vector of length d
or a matrix
with d
columns (where d=length(alpha)
), giving
the coordinates of the point(s) where the density must be avaluated;
for pmsn
, only(d,d)
.d
, or a matrix with d
columns,
representing the location parameter of the distribution.
If xi
is a matrix, its dimensions must agree with those of x
.pmvnorm
dmsn
), or a single probability
(pmsn
) or a matrix of random points (rmsn
).(Omega,alpha)
parametrization
adopted here is the one of Azzalini and Capitanio (1999).Omega
is not tested for
efficiency reasons. Function
pmsn
requires pmvnorm
from library(mvtnorm)
;
the accuracy of its computation can be controlled via use of ...
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew-normal distribution. J.Roy.Statist.Soc. B 61, 579--602.
dsn
, msn.fit
, dmst
,
pmvnorm
x <- seq(-3,3,length=15)
xi <- c(0.5, -1)
Omega <- diag(2)
Omega[2,1] <- Omega[1,2] <- 0.5
alpha <- c(2,2)
pdf <- dmsn(cbind(x,2*x-1), xi, Omega, alpha)
rnd <- rmsn(10, xi, Omega, alpha)
library(mvtnorm) # only once in the session
cdf <- pmsn(c(2,1), xi, Omega, alpha)
Run the code above in your browser using DataLab