Last chance! 50% off unlimited learning
Sale ends in
Discriminant Neighborhood Embedding (DNE) is a supervised subspace learning method. DNE tries to move multi-class data points in high-dimensional space in accordance with local intra-class attraction and inter-class repulsion.
do.dne(
X,
label,
ndim = 2,
numk = max(ceiling(nrow(X)/10), 2),
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten")
)
an
a length-
an integer-valued target dimension.
the number of neighboring points for k-nn graph construction.
an additional option for preprocessing the data.
Default is "center". See also aux.preprocess
for more details.
a named list containing
an
a list containing information for out-of-sample prediction.
a
zhang_discriminant_2006Rdimtools
# NOT RUN {
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## try different numbers for neighborhood size
out1 = do.dne(X, label, numk=5)
out2 = do.dne(X, label, numk=10)
out3 = do.dne(X, label, numk=20)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, main="DNE::nbd size=5", col=label, pch=19)
plot(out2$Y, main="DNE::nbd size=10", col=label, pch=19)
plot(out3$Y, main="DNE::nbd size=20", col=label, pch=19)
par(opar)
# }
Run the code above in your browser using DataLab