# NOT RUN {
## generate ribbon-shaped data
## in order to pass CRAN pretest, n is set to be small.
X = aux.gensamples(dname="ribbon",n=100)
## 1. standard KECA with gaussian kernel
output1 <- do.keca(X,ndim=2)
## 2. gaussian kernel with large bandwidth
output2 <- do.keca(X,ndim=2,kernel=c("gaussian",5))
## 3. use laplacian kernel
output3 <- do.keca(X,ndim=2,kernel=c("laplacian",1))
## Visualize three different projections
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(output1$Y, main="Gaussian kernel")
plot(output2$Y, main="Gaussian, sigma=5")
plot(output3$Y, main="Laplacian kernel")
par(opar)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab