50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

Rdimtools (version 1.0.4)

do.rsr: Regularized Self-Representation

Description

Given a data matrix X where observations are stacked in a row-wise manner, Regularized Self-Representation (RSR) aims at finding a solution to following optimization problem min XXW2,1+λW2,1 where W2,1=i=1mWi:2 is an 2,1 norm that imposes row-wise sparsity constraint.

Usage

do.rsr(
  X,
  ndim = 2,
  preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"),
  lbd = 1
)

Arguments

X

an (n×p) matrix or data frame whose rows are observations and columns represent independent variables.

ndim

an integer-valued target dimension.

preprocess

an additional option for preprocessing the data. Default is "null". See also aux.preprocess for more details.

lbd

nonnegative number to control the degree of self-representation by imposing row-sparsity.

Value

a named list containing

Y

an (n×ndim) matrix whose rows are embedded observations.

featidx

a length-ndim vector of indices with highest scores.

trfinfo

a list containing information for out-of-sample prediction.

projection

a (p×ndim) whose columns are basis for projection.

References

zhu_unsupervised_2015Rdimtools

Examples

Run this code
# NOT RUN {
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X     = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])

#### try different lbd combinations
out1 = do.rsr(X, lbd=0.1)
out2 = do.rsr(X, lbd=1)
out3 = do.rsr(X, lbd=10)

#### visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="RSR::lbd=0.1")
plot(out2$Y, pch=19, col=label, main="RSR::lbd=1")
plot(out3$Y, pch=19, col=label, main="RSR::lbd=10")
par(opar)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab