Given a data matrix
do.rsr(
X,
ndim = 2,
preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"),
lbd = 1
)
an
an integer-valued target dimension.
an additional option for preprocessing the data.
Default is "null". See also aux.preprocess
for more details.
nonnegative number to control the degree of self-representation by imposing row-sparsity.
a named list containing
an
a length-
a list containing information for out-of-sample prediction.
a
zhu_unsupervised_2015Rdimtools
# NOT RUN {
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
#### try different lbd combinations
out1 = do.rsr(X, lbd=0.1)
out2 = do.rsr(X, lbd=1)
out3 = do.rsr(X, lbd=10)
#### visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="RSR::lbd=0.1")
plot(out2$Y, pch=19, col=label, main="RSR::lbd=1")
plot(out3$Y, pch=19, col=label, main="RSR::lbd=10")
par(opar)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab