# NOT RUN {
## generate ribbon-shaped data
## in order to pass CRAN pretest, n is set to be small.
X = aux.gensamples(dname="ribbon",n=99)
## 1. pca scaling with 90% variances explained
output1 <- do.sne(X,ndim=2,pca=TRUE)
## 2. pca scaling wiht 50% variances explained
output2 <- do.sne(X,ndim=2,pca=TRUE,pcaratio=0.50)
## 3. Setting 2 + smaller level of perplexity
output3 <- do.sne(X,ndim=2,pca=TRUE,pcaratio=0.50,perplexity=10)
## Visualize three different projections
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
if ((length(output1)!=1)&&(!is.na(output1))){plot(output1$Y[,1],output1$Y[,2],main="Setting 1")}
if ((length(output1)!=1)&&(!is.na(output2))){plot(output2$Y[,1],output2$Y[,2],main="Setting 2")}
if ((length(output1)!=1)&&(!is.na(output3))){plot(output3$Y[,1],output3$Y[,2],main="Setting 3")}
par(opar)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab