## Not run:
# plosdat <- system.file("examples", "plos_data.json", package = "elastic")
# docs_bulk(plosdat)
# aliases_get()
# index_delete(index='plos')
# aliases_get()
#
# # Curl options
# library("httr")
# plosdat <- system.file("examples", "plos_data.json", package = "elastic")
# docs_bulk(plosdat, config=verbose())
#
# # From a data.frame
# docs_bulk(mtcars, index = "hello", type = "world")
# ## field names cannot contain dots
# names(iris) <- gsub("\\.", "_", names(iris))
# docs_bulk(iris, "iris", "flowers")
# ## type can be missing, but index can not
# docs_bulk(iris, "flowers")
# ## big data.frame, 53K rows, load ggplot2 package first
# # res <- docs_bulk(diamonds, "diam")
# # Search("diam")$hits$total
#
# # From a list
# docs_bulk(apply(iris, 1, as.list), index="iris", type="flowers")
# docs_bulk(apply(USArrests, 1, as.list), index="arrests")
# # dim_list <- apply(diamonds, 1, as.list)
# # out <- docs_bulk(dim_list, index="diamfromlist")
#
# # When using in a loop
# ## We internally get last _id counter to know where to start on next bulk insert
# ## but you need to sleep in between docs_bulk calls, longer the bigger the data is
# files <- c(system.file("examples", "test1.csv", package = "elastic"),
# system.file("examples", "test2.csv", package = "elastic"),
# system.file("examples", "test3.csv", package = "elastic"))
# for (i in seq_along(files)) {
# d <- read.csv(files[[i]])
# docs_bulk(d, index = "testes", type = "docs")
# Sys.sleep(1)
# }
# count("testes", "docs")
# index_delete("testes")
#
# # You can include your own document id numbers
# ## Either pass in as an argument
# index_create("testes")
# files <- c(system.file("examples", "test1.csv", package = "elastic"),
# system.file("examples", "test2.csv", package = "elastic"),
# system.file("examples", "test3.csv", package = "elastic"))
# tt <- vapply(files, function(z) NROW(read.csv(z)), numeric(1))
# ids <- list(1:tt[1],
# (tt[1] + 1):(tt[1] + tt[2]),
# (tt[1] + tt[2] + 1):sum(tt))
# for (i in seq_along(files)) {
# d <- read.csv(files[[i]])
# docs_bulk(d, index = "testes", type = "docs", doc_ids = ids[[i]], es_ids = FALSE)
# }
# count("testes", "docs")
# index_delete("testes")
#
# ## or include in the input data
# ### from data.frame's
# index_create("testes")
# files <- c(system.file("examples", "test1_id.csv", package = "elastic"),
# system.file("examples", "test2_id.csv", package = "elastic"),
# system.file("examples", "test3_id.csv", package = "elastic"))
# readLines(files[[1]])
# for (i in seq_along(files)) {
# d <- read.csv(files[[i]])
# docs_bulk(d, index = "testes", type = "docs")
# }
# count("testes", "docs")
# index_delete("testes")
#
# ### from lists via file inputs
# index_create("testes")
# for (i in seq_along(files)) {
# d <- read.csv(files[[i]])
# d <- apply(d, 1, as.list)
# docs_bulk(d, index = "testes", type = "docs")
# }
# count("testes", "docs")
# index_delete("testes")
# ## End(Not run)
Run the code above in your browser using DataLab