# NOT RUN {
library(TunePareto)
data(esl)
data = esl$data
labels = esl$labels
foldList = generateCVRuns(labels = labels,
ntimes = 2,
nfold = 2,
leaveOneOut = FALSE,
stratified = TRUE)
predMap = predictionMap(data, labels, foldList = foldList,
classifier = tunePareto.svm(), kernel='linear')
# generate Subcascades object
subc = subcascades(predMap,thresh=0.5)
# filters for cascades that
# 1. have a minimal classwise sensitivity >= 0.6
dropThreshold(subc,thresh=0.6)
# 2. have a minimal classwise sensitivity <= 0.6
dropThreshold(subc, comparison = '<=', thresh=0.6)
# }
Run the code above in your browser using DataLab