Learn R Programming

spsurvey (version 2.6)

dsgnsum: Summarize the Sites Selected for a Survey Design

Description

This function summarizes the sites selected for a survey design by producing contingency tables containing the cross-tabluation of number of sites for survey design variables and, optionally, for auxiliary variables.

Usage

dsgnsum(sp.obj, auxvar=NULL)

Arguments

sp.obj
the sp package object of class "SpatialPointsDataFrame" produced by the grts function that contains survey design information and additional attribute (auxiliary) variables.
auxvar
a vector containing the names of columns from sites that identify auxiliary variables to be used to summarize the survey design.

Value

  • A list containing the following components:
  • DesignSuma list of contingency tables containing the cross-tabulation of number of sites for the following combinations of survey design variables: (1) multidensity category (mdcaty) and stratum (2) stratum and panel (3) mdcaty, panel, and stratum
  • AuxVarSuma list of contingency tables containing the cross-tabulation of number of sites for each auxiliary variable and the design variables mdcaty, panel, and stratum
  • In addition the output list plus labeling information is printed to the console.

References

Stevens, D.L., Jr., and A.R. Olsen. (2004). Spatially-balanced sampling of natural resources. Journal of the American Statistical Association 99: 262-278.

See Also

grts framesum

Examples

Run this code
design <- list(Stratum1=list(panel=c(PanelOne=50), seltype="Equal", over=10),
   Stratum2=list(panel=c(PanelOne=50, PanelTwo=50), seltype="Unequal",
   caty.n=c(CatyOne=25, CatyTwo=25, CatyThree=25, CatyFour=25), over=75))
attframe <- read.dbf("shapefile")
samp <- grts(design=design, DesignID="Test.Site", type.frame="area",
   src.frame="shapefile", in.shape="shapefile", att.frame=attframe,
   stratum="stratum", mdcaty="mdcaty", shapefile=TRUE,
   shapefilename="sample")
dsgnsum(samp, auxvar=c("ecoregion", "state"))

Run the code above in your browser using DataLab