dynupdate(data, newdata = NULL, holdoutdata, method = c("ts", "block", "ols", "pls", "ridge"), fmethod = c("arima", "ar", "ets", "ets.na", "rwdrift", "rw"), pcdmethod = c("classical", "M", "rapca"), ngrid = max(1000, ncol(data$y)), order = 6, robust_lambda = 2.33, lambda = 0.01, value = FALSE, interval = FALSE, level = 80, pimethod = c("parametric", "nonparametric"), B = 1000)
sfts
.method = "ts"
or method = "block"
.ncol(data$y)
.pcdmethod = "M"
.method = "pls"
or method = "ridge"
.value = TRUE
, returns forecasts or when value = FALSE
, returns forecast errors.interval = TRUE
, produces distributional forecasts.fts
containing the dynamic updated point forecasts.fts
containing the bootstrapped point forecasts, which are updated by the PLS method.fts
containing the lower bound of prediction intervals.fts
containing the upper bound of prediction intervals.If method = "classical"
, then standard functional principal component decomposition is used, as described by Ramsay and Dalzell (1991).
If method = "rapca"
, then the robust principal component algorithm of Hubert, Rousseeuw and Verboven (2002) is used.
If method = "M"
, then the hybrid algorithm of Hyndman and Ullah (2005) is used.
M. Hubert and P. J. Rousseeuw and S. Verboven (2002) "A fast robust method for principal components with applications to chemometrics", Chemometrics and Intelligent Laboratory Systems, 60(1-2), 101-111.
R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", Computational Statistics and Data Analysis, 51(10), 4942-4956.
H. Shen and J. Z. Huang (2008) "Interday forecasting and intraday updating of call center arrivals", Manufacturing and Service Operations Management, 10(3), 391-410.
H. Shen (2009) "On modeling and forecasting time series of curves", Technometrics, 51(3), 227-238.
H. L. Shang and R. J. Hyndman (2011) "Nonparametric time series forecasting with dynamic updating", Mathematics and Computers in Simulation, 81(7), 1310-1324.
H. L. Shang (2013) "Functional time series approach for forecasting very short-term electricity demand", Journal of Applied Statistics, 40(1), 152-168.
H. L. Shang (2015) "Forecasting Intraday S&P 500 Index Returns: A Functional Time Series Approach", Working paper, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2647233.
ftsm
, forecast.ftsm
, plot.fm
, residuals.fm
, summary.fm
# ElNino is an object of sliced functional time series, constructed from a univariate time series.
# When we observe some newly arrived information in the most recent time period, this function
# allows us to update the point and interval forecasts for the remaining time period.
dynupdate(data = ElNino, newdata = ElNino$y[1:4,57], holdoutdata = ElNino$y[5:12,57],
method = "block", interval = FALSE)
Run the code above in your browser using DataLab