eSet contain one or more
  identical-sized matrices as assayData elements. Derived
  classes (e.g., ExpressionSet-class, SnpSet-class)
  specify which elements must be present in the assayData slot.  eSet object cannot be instantiated directly; see the examples
  for usage.
eSet is a virtual class, so instances cannot be created. Objects created under previous definitions of eSet-class can be
  coerced to the current classes derived from eSet using
  updateOldESet.eSet:
   assayData:nrow(phenoData). Class:AssayData-classphenoData:assayData) phenotypes.
	Class: AnnotatedDataFrame-classfeatureData:assayData) unique to this experiment. Use
	the annotation slot to efficiently reference feature data
	common to the annotation package used in the experiment. Class:
	AnnotatedDataFrame-classexperimentData:MIAME-classannotation:characterprotocolData:assayData) phenotypes.
    Class: AnnotatedDataFrame-class.__classVersion__:Versions object describing
    the R and Biobase version numbers used to created the instance.
    Intended for developer use.ExpressionSet-class,
  SnpSet-class) may override the methods described here. Class-specific methods:
   sampleNames(object) and
       sampleNames(object)<-value:assayData and phenoDatafeatureNames(object),
       featureNames(object) <- value:assayData.dimnames(object), dimnames(object) <-
	 value:rownames and colnames; access and set
	 feature and sample names.dims(object):dim) or
       column numbers (ncol), or dimensions of all members
       (dims) of assayData.phenoData(object),
       phenoData(object) <- value:phenoData. Adding new columns to phenoData is often
	   more easily done with eSetObject[["columnName"]] <- value.pData(object), pData(object) <- value:pData is often
	   more easily done with eSetObject[["columnName"]] <- value.varMetadata(object),
       varMetadata(eSet,value)pDatavarLabels(object), varLabels(eSet,
	     value)<-:phenoData.featureData(object),
       featureData(object) <- value:featureData.fData(object), fData(object) <- value:fvarMetadata(object),
       fvarMetadata(eSet,value)fDatafvarLabels(object),
       fvarLabels(eSet, value)<-:featureData.assayData(object), assayData(object) <- value:signature(object = "eSet", value = "AssayData"): Access
       and replace the AssayData slot of an
       eSet instance. assayData returns a list or
       environment; elements in assayData not accessible in other
       ways (e.g., via exprs applied directly to the eSet)
       can most reliably be accessed with, e.g., assayData(obj)[["se.exprs"]].experimentData(object),experimentData(object) <- value:description(object),description(object) <- value:notes(object),notes(object) <- value:signature(object="eSet", value="list") Retrieve and set unstructured notes associated with eSet.
       signature(object="eSet", value="character") As with
       value="list", but append value to current list of notes.pubMedIds(object), pubMedIds(eSet,value)experimentData.abstract(object):experimentData.annotation(object),
       annotation(object) <- valueprotocolData(object),
       protocolData(object) <- valuepreproc(object),
       preproc(object) <- value:signature(object="eSet",
	 value="list") Access and set preprocessing information
       in the MIAME-class object associated with this
       eSet.combine(eSet,eSet):eSet
       objects. To be combined, eSets must have identical numbers of
       featureNames, distinct sampleNames, and identical annotation.storageMode(object), storageMode(eSet,character)<-:assayData. Can be used to 'unlock' environments,
       or to change between list and environment modes of
       storing assayData.initialize(object):validObject(object):phenoData rows match the number and names of
	  assayData columnsas(eSet, "ExpressionSet")"eSet" to instance of ExpressionSet-class, if possible.as(eSet, "MultiSet")"eSet" to instance of MultiSet-class, if possible.updateObject(object, ..., verbose=FALSE)updateObjectupdateObjectTo(object, template, ..., verbose=FALSE)template, if necessary. Usually call by class inheritance, rather than directly by the user. See updateObjectToisCurrent(object)isCurrentisVersioned(object)isVersionedshow(object)dim(object), ncoldim) or column numbers (ncol), of all
       memebers (dims) of assayData.object[(index):object$name, object$name<-valuename column in phenoDataobject[[i, ...]], object[[i, ...]]<-valuei (character or
       numeric index) in phenoData. The ... argument can include
       named variables (especially labelDescription) to be added
       to varMetadata.element from assayData slot of object.element in assayData slot of object to matrix valueelement in assayData slot of object to matrix valueassayData slot of objectupdateOldESeteSet
       constructued using listOrEnv as assayData slot
       (before May, 2006).ExpressionSet-class.
  Related  classes
  AssayData-class, AnnotatedDataFrame-class, MIAME-class.
  Derived classes
  ExpressionSet-class, SnpSet-class.
  To update objects from previous class versions, see updateOldESet.
# update previous eSet-like class oldESet to existing derived class
## Not run: updateOldESet(oldESet, "ExpressionSet")
# create a new, ad hoc, class, for personal use
# all methods outlined above are available automatically
.MySet <- setClass("MySet", contains="eSet")
.MySet()
# Create a more robust class, with constructor and validation methods
# to ensure assayData contains specific matricies
.TwoColorSet <- setClass("TwoColorSet", contains="eSet")
TwoColorSet <-
    function(phenoData=AnnotatedDataFrame(), experimentData=MIAME(),
             annotation=character(), R=new("matrix"), G=new("matrix"),
             Rb=new("matrix"), Gb=new("matrix"), ...)
{
    .TwoColorSet(phenoData=phenoData, experimentData=experimentData,
                 annotation=annotation, R=R, G=G, Rb=Rb, Gb=Gb, ...)
}
setValidity("TwoColorSet", function(object) {
  assayDataValidMembers(assayData(object), c("R", "G", "Rb", "Gb"))
})
TwoColorSet()
# eSet objects cannot be instantiated directly, only derived objects
try(new("eSet"))
removeClass("MySet")
removeClass("TwoColorSet")
Run the code above in your browser using DataLab