Last chance! 50% off unlimited learning
Sale ends in
Empirical univariate probability density functions, empirical univariate cumulative distribution functions and empirical univariate quantile functions. Refer to the vignette for better examples.
epdfuv (x, derandomize=TRUE, preserve="mean",
drp, nhood, bind=TRUE, randomize=TRUE, w=NA)
ecdfuv (x, derandomize=TRUE, preserve="mean",
drp, nhood, bind=TRUE, randomize=TRUE, w=NA)
ecdfuv.inverse (x, derandomize=TRUE, preserve="mean",
drp, nhood, bind=TRUE, randomize=TRUE, w=NA)
A vector of data points.
If true, smooth the data points.
Either "mean" or "range". If derandomize and mean (the default), preserve the mean and variance. If derandomize and range, preserve the range.
A smoothness (derandomization) parameter. Refer to the vignette.
A neighborhood size parameter. Refer to the vignette.
If true, add an extra two data points.
If there a duplicated values, add a small amount of random variation.
A vector of weights.
These functions return functions.
epdfmv, ecdfmv, epdfc, ecdfc, ecdfc.inverse, epdfuv.f, ecdfuv.f, ecdfuv.f.inverse
# NOT RUN {
#construct an empirical univariate probability density function
#and then evaluate it
data (trees)
attach (trees)
epdfuv.f = epdfuv (Height)
epdfuv.f (80)
# }
Run the code above in your browser using DataLab