## Logistic dose-response model
ymean <- "(1/(exp(-b2*(x1-b1))+1))"
yvar <- "(1/(exp(-b2*(x1-b1))+1))*(1-(1/(exp(-b2*(x1-b1))+1)))"
eff (ymean, yvar, param = c(.9, .8), points1 = c(-3, 1, 2),
points2 = c(-1.029256, 2.829256), weights1 = rep(.33, 3), weights2 = c(.5, .5),
prec = 54)
## or
ldlogistic(a = .9 , b = .8, form = 2, lb = -5, ub = 5, user.points = c(-3, 1, 2),
user.weights = c(.33, .33, .33))$user.eff
## Poisson model:
ymean <- yvar <- "exp(b1 + b2 * x1)"
eff (ymean, yvar, param = c(.9, .8), points1 = c(-3, 1, 2), points2 = c(2.5, 5.0),
weights1 = rep(.33, 3), weights2 = c(.5, .5), prec = 54)
#####################################################################
## In the following, ymean and yvar for some famous models are given:
## Logistic model:
ymean <- "1/(exp(-b1 - b2 * x1) + 1)"
yvar <- "(1/(exp(-b1 - b2 * x1) + 1))*(1 - (1/(exp(-b1 - b2 * x1) + 1)))"
## Poisson dose response model:
ymean <- yvar <- "b1 * exp(-b2 * x1)"
## Inverse Quadratic model:
ymean <- "(b1 * x1)/(b2 + x1 + b3 * (x1)^2)"
yvar <- "1"
#
ymean <- "x1/(b1 + b2 * x1 + b3 * (x1)^2)"
yvar <- "1"
## Weibull model:
ymean <- "b1 - b2 * exp(-b3 * x1^b4)"
yvar <- "1"
## Richards model:
ymean <- "b1/(1 + b2 * exp(-b3 * x1))^b4"
yvar <- "1"
## Michaelis-Menten model:
ymean <- "(b1 * x1)/(1 + b2 * x1)"
yvar <- "1"
#
ymean <- "(b1 * x1)/(b2 + x1)"
yvar <- "1"
#
ymean <- "x1/(b1 + b2 * x1)"
yvar <- "1"
## log-linear model:
ymean <- "b1 + b2 * log(x1 + b3)"
yvar <- "1"
## Exponential model:
ymean <- "b1 + b2 * exp(x1/b3)"
yvar <- "1"
## Emax model:
ymean <- "b1 + (b2 * x1)/(x1 + b3)"
yvar <- "1"
## Negative binomial model Y ~ NB(E(Y), theta) where E(Y) = b1 * exp(-b2 * x1):
theta <- 5
ymean <- "b1 * exp(-b2 * x1)"
yvar <- paste ("b1 * exp(-b2 * x1)*(1 + (1/", theta, ") * b1 * exp(-b2 * x1))", sep = "")
## Linear regression model:
ymean <- "b1 + b2 * x1 + b3 * x2 + b4 * x1 * x2"
yvar = "1"
Run the code above in your browser using DataLab