This function tries to return the best effect-size measure for the provided input model. See details.
effectsize(model, ...)# S3 method for BFBayesFactor
effectsize(model, type = NULL, verbose = TRUE, ...)
# S3 method for aov
effectsize(model, type = NULL, ...)
# S3 method for htest
effectsize(model, type = NULL, verbose = TRUE, ...)
An object of class htest
, or a statistical model. See details.
Arguments passed to or from other methods. See details.
The effect size of interest. See details.
Toggle warnings and messages on or off.
A data frame with the effect size (depending on input) and and its
CIs (CI_low
and CI_high
).
For an object of class htest
, data is extracted via insight::get_data()
, and passed to the relevant function according to:
A t-test depending on type
: "cohens_d"
(default), "hedges_g"
.
A correlation test returns r.
A Chi-squared tests of independence or goodness-of-fit, depending on type
: "cramers_v"
(default), "phi"
or "cohens_w"
, "cohens_h"
, "oddsratio"
, or "riskratio"
.
A One-way ANOVA test, depending on type
: "eta"
(default), "omega"
or "epsilon"
-squared, "f"
, or "f2"
.
A McNemar test returns Cohen's g.
A Fisher's Exact test (in the 2x2 case) returns Odds ratio.
A Wilcoxon test returns rank biserial correlation.
A Kruskal-Wallis test returns rank Epsilon squared.
A Friedman test returns Kendall's W.
For an object of class BFBayesFactor
, using bayestestR::describe_posterior()
,
A t-test returns Cohen's d.
A correlation test returns r.
A contingency table test, depending on type
: "cramers_v"
(default), "phi"
or "cohens_w"
, "cohens_h"
, "oddsratio"
, or "riskratio"
.
Objects of class anova
, aov
, or aovlist
, depending on type
: "eta"
(default), "omega"
or "epsilon"
-squared, "f"
, or "f2"
.
Other objects are passed to standardize_parameters()
.
For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.
Other effect size indices:
cohens_d()
,
eta_squared()
,
phi()
,
rank_biserial()
,
standardize_parameters()
# NOT RUN {
## Hypothesis Testing
## ------------------
contingency_table <- as.table(rbind(c(762, 327, 468), c(484, 239, 477), c(484, 239, 477)))
Xsq <- chisq.test(contingency_table)
effectsize(Xsq)
effectsize(Xsq, type = "phi")
Ts <- t.test(1:10, y = c(7:20))
effectsize(Ts)
Aov <- oneway.test(extra ~ group, data = sleep, var.equal = TRUE)
effectsize(Aov)
effectsize(Aov, type = "omega")
## Bayesian Hypothesis Testing
## ---------------------------
# }
# NOT RUN {
if (require(BayesFactor)) {
bf1 <- ttestBF(mtcars$mpg[mtcars$am == 1], mtcars$mpg[mtcars$am == 0])
effectsize(bf1, test = NULL)
bf2 <- correlationBF(attitude$rating, attitude$complaints)
effectsize(bf2, test = NULL)
data(raceDolls)
bf3 <- contingencyTableBF(raceDolls, sampleType = "poisson", fixedMargin = "cols")
effectsize(bf3, test = NULL)
effectsize(bf3, type = "oddsratio", test = NULL)
}
# }
# NOT RUN {
## Models and Anova Tables
## -----------------------
fit <- lm(mpg ~ factor(cyl) * wt + hp, data = mtcars)
effectsize(fit)
anova_table <- anova(fit)
effectsize(anova_table)
effectsize(anova_table, type = "epsilon")
# }
Run the code above in your browser using DataLab