# Generate 20 observations from a gamma distribution with parameters 
  # shape=3 and scale=2, then estimate the parameters. 
  # (Note: the call to set.seed simply allows you to reproduce this 
  # example.)
  set.seed(250) 
  dat <- rgamma(20, shape = 3, scale = 2) 
  egamma(dat, ci = TRUE)
  #Results of Distribution Parameter Estimation
  #--------------------------------------------
  #
  #Assumed Distribution:            Gamma
  #
  #Estimated Parameter(s):          shape = 2.203862
  #                                 scale = 2.174928
  #
  #Estimation Method:               mle
  #
  #Data:                            dat
  #
  #Sample Size:                     20
  #
  #Confidence Interval for:         mean
  #
  #Confidence Interval Method:      Optimum Power Normal Approximation
  #                                 of Kulkarni & Powar (2010)
  #                                 using mle of 'shape'
  #
  #Normal Transform Power:          0.246
  #
  #Confidence Interval Type:        two-sided
  #
  #Confidence Level:                95%
  #
  #Confidence Interval:             LCL = 3.361652
  #                                 UCL = 6.746794
  # Clean up
  rm(dat)
  #----------------------------------------------------------------
  # Using the reference area TcCB data in EPA.94b.tccb.df, assume a 
  # gamma distribution, estimate the parameters based on the 
  # bias-corrected mle of shape, and compute a one-sided upper 90% 
  # confidence interval for the mean.
  attach(EPA.94b.tccb.df)
  #----------
  # First test to see whether the data appear to follow a gamma 
  # distribution.
  gofTest(TcCB[Area == "Reference"], dist = "gamma", 
    est.arg.list = list(method = "bcmle"))
  #Results of Goodness-of-Fit Test
  #-------------------------------
  #
  #Test Method:                     Shapiro-Wilk GOF Based on 
  #                                 Chen & Balakrisnan (1995)
  #
  #Hypothesized Distribution:       Gamma
  #
  #Estimated Parameter(s):          shape = 4.5695247
  #                                 scale = 0.1309788
  #
  #Estimation Method:               bcmle
  #
  #Data:                            TcCB[Area == "Reference"]
  #
  #Sample Size:                     47
  #
  #Test Statistic:                  W = 0.9703827
  #
  #Test Statistic Parameter:        n = 47
  #
  #P-value:                         0.2739512
  #
  #Alternative Hypothesis:          True cdf does not equal the
  #                                 Gamma Distribution.
  #----------
  # Now estimate the paramters and compute the upper confidence 
  # limit.
  egamma(TcCB[Area == "Reference"], method = "bcmle", ci = TRUE, 
    ci.type = "upper", conf.level = 0.9) 
  #Results of Distribution Parameter Estimation
  #--------------------------------------------
  #
  #Assumed Distribution:            Gamma
  #
  #Estimated Parameter(s):          shape = 4.5695247
  #                                 scale = 0.1309788
  #
  #Estimation Method:               bcmle
  #
  #Data:                            TcCB[Area == "Reference"]
  #
  #Sample Size:                     47
  #
  #Confidence Interval for:         mean
  #
  #Confidence Interval Method:      Optimum Power Normal Approximation
  #                                 of Kulkarni & Powar (2010)
  #                                 using bcmle of 'shape'
  #
  #Normal Transform Power:          0.246
  #
  #Confidence Interval Type:        upper
  #
  #Confidence Level:                90%
  #
  #Confidence Interval:             LCL = 0.0000000
  #                                 UCL = 0.6561838
  #----------------------------------------------------------------
  # Repeat the above example but use the alternative 
  # parameterization.
  egammaAlt(TcCB[Area == "Reference"], method = "bcmle", ci = TRUE, 
    ci.type = "upper", conf.level = 0.9) 
  #Results of Distribution Parameter Estimation
  #--------------------------------------------
  #
  #Assumed Distribution:            Gamma
  #
  #Estimated Parameter(s):          mean = 0.5985106
  #                                 cv   = 0.4678046
  #
  #Estimation Method:               bcmle of 'shape'
  #
  #Data:                            TcCB[Area == "Reference"]
  #
  #Sample Size:                     47
  #
  #Confidence Interval for:         mean
  #
  #Confidence Interval Method:      Optimum Power Normal Approximation
  #                                 of Kulkarni & Powar (2010)
  #                                 using bcmle of 'shape'
  #
  #Normal Transform Power:          0.246
  #
  #Confidence Interval Type:        upper
  #
  #Confidence Level:                90%
  #
  #Confidence Interval:             LCL = 0.0000000
  #                                 UCL = 0.6561838
  #----------
  # Clean up
  #---------
  detach("EPA.94b.tccb.df")Run the code above in your browser using DataLab