ego_variance(graph, Y, funname, all = FALSE)dgCMatrix.vertex_covariate_compare).FALSE (default) $f_i$ is mean at
ego level. Otherwise is fix for all i (see details).$$% (\sum_j a_{ij})^{-1}\sum_j a_{ij} \left[f(y_i,y_j) - f_i\right]^2 $$
Where $a(ij)$ is the ij-th element of graph, $f$ is
the function specified in funname, and, if all=FALSE
$f(i)=\sum_j a(ij)f(y(i), y(j))^2/\sum_j a(ij)$,
otherwise $f(i)=f(j)=(1/n^2)\sum_(i,j) f(y_i,y_j)$
This is an auxiliary function for struct_test. The idea is
to compute an adjusted measure of disimilarity between vertices, so the
closest in terms of $f$ is $i$ to its neighbors, the smaller the
relative variance.
struct_testOther statistics: classify_adopters,
cumulative_adopt_count, dgr,
exposure, hazard_rate,
infection, moran,
struct_equiv, threshold,
vertex_covariate_dist