em.ggb: EM calculation for Gamma-Gamma-Bernoulli Model
Description
The function plots contours for the odds that points on microarray show
differential expression between two conditions (e.g. Cy3 and Cy5 dye
channels on the same microarray).
Usage
em.ggb(x, y, theta, start = c(2,1.2,2.7), pprior = 2, printit = FALSE, tol = 1e-9, offset = 0 )
Arguments
x
first condition expression levels
y
second condition expression levels
theta
four parameters a,a0,nu,p
start
starting estimates for theta
pprior
Beta hyperparameter for prob p of differential
expression
printit
print iterations if TRUE
tol
parameter tolerance for convergence
offset
offset added to xx and yy before taking log (can help
with negative adjusted values)
Value
Four parameter vector theta after convergence.
Details
Fit Gamma/Gamma/Bernoulli model (equal marginal distributions)
The model has spot intensities x ~ Gamma(a,b); y ~ Gamma(a,c).
The shape parameters b and c are ~ Gamma(a0,nu).
With probability p, b = c; otherwise b != c. All spots are assumed to be
independent.
References
MA Newton, CM Kendziorski, CS Richmond, FR Blattner and KW
Tsui (2000) ``On differential variability of expression ratios:
improving statistical inference about gene expression changes from
microarray data,''
J Computational Biology 00: 000-000.