emE(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emV(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emEII(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emVII(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emEEI(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emVEI(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emEVI(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emVVI(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emEEE(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emEEV(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emVEV(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emVVV(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)priorControl.emControl()..Mclust$warn.do.call.[i,k]th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture.C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611-631. C. Fraley and A. E. Raftery (2005). Bayesian regularization for normal mixture estimation and model-based clustering. Technical Report, Department of Statistics, University of Washington.
C. Fraley and A. E. Raftery (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181.
me,
mstep,
mclustOptionsmsEst <- mstepEEE(data = iris[,-5], z = unmap(iris[,5]))
names(msEst)
emEEE(data = iris[,-5], parameters = msEst$parameters)Run the code above in your browser using DataLab