Learn R Programming

mclust (version 5.2.2)

emE: EM algorithm starting with E-step for a parameterized Gaussian mixture model.

Description

Implements the EM algorithm for a parameterized Gaussian mixture model, starting with the expectation step.

Usage

emE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emX(data, prior = NULL, warn = NULL, ...) emEII(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVII(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEEI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVEI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEVI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVVI(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEEE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEEV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVEV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVVV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEVE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emEVV(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVEE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emVVE(data, parameters, prior = NULL, control = emControl(), warn = NULL, ...) emXII(data, prior = NULL, warn = NULL, ...) emXXI(data, prior = NULL, warn = NULL, ...) emXXX(data, prior = NULL, warn = NULL, ...)

Arguments

data
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
parameters
The parameters of the model:

prior
The default assumes no prior, but this argument allows specification of a conjugate prior on the means and variances through the function priorControl.
control
A list of control parameters for EM. The defaults are set by the call emControl().
warn
A logical value indicating whether or not a warning should be issued whenever a singularity is encountered. The default is given in mclust.options("warn").
...
Catches unused arguments in indirect or list calls via do.call.

Value

A list including the following components:

References

C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611-631. C. Fraley and A. E. Raftery (2005). Bayesian regularization for normal mixture estimation and model-based clustering. Technical Report, Department of Statistics, University of Washington. C. Fraley and A. E. Raftery (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181. C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.

See Also

me, mstep, mclustVariance, mclust.options.

Examples

Run this code
msEst <- mstepEEE(data = iris[,-5], z = unmap(iris[,5]))
names(msEst)

emEEE(data = iris[,-5], parameters = msEst$parameters)

Run the code above in your browser using DataLab