emE(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emV(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emEII(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emVII(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emEEI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emVEI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emEVI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emVVI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emEEE(data, mu, Sigma, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emEEV(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emVEV(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emVVV(data, mu, sigma, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)mu is a matrix whose columns are the means of the
components.cdens.[,,k]th entry is the covariance matrix for the
kth component of the mixture model.em, eps allow computations to
proceed nearer to singularity.
The default is .Mclust$eps.Mclust$tol..Mclust$itmax..Mclust$equalPro..Mclust$warnSingular.hypvol to the data.
Used only when pro includes an additional
mixing proportion for a noise component.[i,k]th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture.[,,k]th entry gives the
the covariance for the kth group in the best model. "info": Information on the iteration."warn": An appropriate warning if problems are
encountered in the computations.do.call, allowing the output
of e.g. mstep to be passed
without the need to specify individual parameters as arguments.em,
mstep,
mclustOptions,
do.calldata(iris)
irisMatrix <- as.matrix(iris[,1:4])
irisClass <- iris[,5]
msEst <- mstepEEE(data = irisMatrix, z = unmap(irisClass))
names(msEst)
emEEE(data = irisMatrix, mu = msEst$mu, pro = msEst$pro,
cholSigma = msEst$cholSigma)
do.call("emEEE", c(list(data=irisMatrix), msEst)) ## alternative callRun the code above in your browser using DataLab