Last chance! 50% off unlimited learning
Sale ends in
Analysis of variance for (hyper-)spherical data.
hcf.aov(x, ina, fc = TRUE)lr.aov(x, ina)
embed.aov(x, ina)
het.aov(x, ina)
A matrix with the data in Euclidean coordinates, i.e. unit vectors.
A numerical variable or a factor indicating the group of each vector.
A boolean that indicates whether a corrected F test should be used or not.
A vector including:
The test statistic value.
The p-value of the F test.
The common concentration parameter kappa based on all the data.
The high concentration (hcf.aov), log-likelihood ratio (lr.aov), embedding approach (embed.aov) or the non equal concentration parameters approach (het.aov) is used.
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.
# NOT RUN {
x <- rvmf(60, rnorm(3), 15)
ina <- rep(1:3, each = 20)
hcf.aov(x, ina)
hcf.aov(x, ina, fc = FALSE)
lr.aov(x, ina)
embed.aov(x, ina)
het.aov(x, ina)
# }
Run the code above in your browser using DataLab